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DISCONTINUOUS GALERKIN AND THE CROUZEIX–RAVIART ELEMENT:
APPLICATION TO ELASTICITY

Peter Hansbo1 and Mats G. Larson2

Abstract. We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous
piecewise linear approximation of the displacements. We show optimal order a priori error estimates,
uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is
closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when
one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the CR
element is not stable in that it does not fulfill a discrete Korn’s inequality, the discontinuous framework
naturally suggests the appearance of (weakly consistent) stabilization terms. Thus, a stabilized version
of the CR element, which does not lock, can be used for both compressible and (nearly) incompressible
elasticity. Numerical results supporting these assertions are included. The analysis directly extends to
higher order elements and three spatial dimensions.
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1. Introduction

In a discontinuous Galerkin method the approximation space typically consists of discontinuous piecewise
polynomials with boundary conditions and continuity on inter-element boundaries weakly enforced through the
bilinear form. For second order problems these methods appear to origin from the work of Nitsche [11], where
a consistent method for weak imposement of Dirichlet conditions was introduced. Later, similar techniques
to enforce continuity on inter element boundaries were introduced and analyzed, see for instance Baker [2],
Wheeler [14] and Arnold [1]. Recently there has been a growing interest in discontinuous Galerkin methods for
a variety of different applications, see the conference proceedings [15] for an overview of recent work.

In this paper we propose and analyze a discontinuous Galerkin method for linear elasticity, which has optimal
order and does not lock in the incompressible limit. The method is related to the earlier work of Hansbo and
Larson [8], but uses a different stabilization (or penalization) of discontinuities. There is a natural connection
between the discontinuous Galerkin method proposed here and the classical nonconforming Crouzeix–Raviart
(CR) element, see [5]. The lowest order CR element is a simple nonconforming finite element for triangular
elements with nodes situated at the midpoints of the element sides, which can be used for the Poisson problem
and the Stokes or Navier–Stokes problems [5, 13]. Further, Brenner and Sung [3] used the CR element to
construct a locking free method for the pure displacement problem of almost incompressible elasticity. However,
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for the traction problem in elasticity the CR element is known to be unstable, since it can not control the rigid
body rotations, cf. Hughes [10] (Sect. 4.7). In the two dimensional case, Falk [6] obtained a stable version
of the CR element by splitting the elasticity operator and projecting one part of the operator onto a macro
element. In this paper, we instead obtain a stabilized method for the CR element, by simply using the CR
element in the discontinuous Galerkin method. In fact, the CR element approximation is obtained as a certain
stabilization parameter tends to infinity in the discontinuous Galerkin method. Thus, error estimates for the
nonconforming method based on the CR element are obtained as special cases of the error estimates for the
discontinuous Galerkin method. Although we present the analysis of linear elements in two spatial dimensions
it directly extends to higher order elements and three spatial dimensions. For simplicity, the analysis is done for
the case of homogeneous Dirichlet boundary conditions, but the analysis can be easily extended to the mixed
boundary-value problem provided the necessary regularity results hold.

The paper is organized as follows: in Section 2 we introduce the equations of elasticity and the discontinuous
Galerkin method, and we prove a priori error estimates; in Section 3 we introduce the stabilized method for
the nonconforming CR element; and in Section 4 we present numerical examples illustrating our results.

2. A discontinuous Galerkin method for elasticity

2.1. The equations of elasticity

We consider the equations of linear elasticity describing the displacement of an elastic body occupying
a domain Ω in two spatial dimensions: find the displacement u = [ui]

2
i=1 and the symmetric stress tensor

σ = [σij ]
2
i,j=1 such that

σ = λ tr ε(u)I + 2µε(u) in Ω, (1)
−∇ · σ = f in Ω, (2)

u = 0 on ∂Ω. (3)

Here ε (u) = [εij(u)]2i,j=1 is the strain tensor with components

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

∇·σ =
[∑2

j=1 ∂σij/∂xj

]2

i=1
, I = [δij ]

2
i,j=1 with δij = 1 if i = j and δij = 0 if i �= j, tr ε(u) =

∑
k εkk(u) = ∇·u,

and f is a given load. Furthermore, λ and µ are the Lamé constants, satisfying 0 < µ1 < µ < µ2 and 0 < λ < ∞.
Incompressible behavior is obtained as the parameter λ → ∞.

2.2. Formulation of the discontinuous Galerkin method

Consider a subdivision T = {T } of Ω of Ω into a geometrically conforming finite element mesh. with hT the
diameter of triangle T and global mesh size parameter h = maxT∈T hT . For simplicity, we assume that T is
quasi uniform. Let

DF = {v ∈ [L2(Ω)]2 : v|T ∈ P 1(T ) for all T ∈ T },

be the space of piecewise linear discontinuous functions. The set of edges in the mesh is denoted by E = {E}
and we split E into two disjoint subsets

E = EI ∪ EE,

where EI is the set of edges in the interior of Ω and EE is the set of edges on the boundary ∂Ω. Further, with
each edge we associate a fixed unit normal n such that for edges on the boundary n is the exterior unit normal.
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We denote the jump of a function v ∈ DF at an edge E by [v] = v+ − v− for E ∈ EI and [v] = v+ for E ∈ EE,
and the average 〈v〉 = (v+ + v−)/2 for E ∈ EI and 〈v〉 = v+ for E ∈ EE, where v± = limε↓0 v(x ∓ ε n) with
x ∈ E.

The discontinuous Galerkin method reads: find U ∈ DF such that

a(U , v) = l(v) for all v ∈ DF . (4)

The bilinear form is defined by

a(U , v) =
∑
T∈T

(σ(U), ε(v))T −
∑
E∈E

(〈n · σ(U)〉 , [v])E + (〈n · σ(v)〉 , [U ])E (5)

+ (2µ + λ)γ0

∑
E∈E

(h−1 [P0U ] , [P0v])E + 2µγ1

∑
E∈E

(h−1 [U ] , [v])E ,

and the linear functional is defined by

l(v) =
∑
T∈T

(f , v)T . (6)

Here

(σ, ε)T =
∫

T

σ : ε =
∫

T

∑
ij

σijεij

for 2-tensors σ, ε; (v, w)E =
∫

E v · w for vectors v, w; P0 is the L2-projection onto constants on each edge E,
i.e.,

P0v|E =
1
|E|

∫
E

v, (7)

with |E| the length of E; h is defined by

h|E =
(
|T +| + |T−|

)
/(2 |E|) for E = ∂T + ∩ ∂T−, (8)

with |T | the area of T , on each edge.
Using Green’s formula, we readily establish the following proposition.

Proposition 2.1. The method (4) is consistent in the sense that

a(u − U , v) = 0 for all v ∈ DF ,

and u sufficiently regular.

2.3. A priori error estimates

For the purpose of error analysis, we introduce the following mesh dependent energy-like norm

|‖v‖|2 =
∑
T∈T

(σ(v), ε(v))T +
∑
E∈E

(h〈n · σ(v)〉, 〈n · ε(v)〉)E +
∑
E∈E

(
2µ

h
[v] , [v]

)
E

, (9)

and the edge norm

‖v‖2
E =

∑
E∈E

‖v‖2
L2(E). (10)
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In order to show that the method (4) is stable, we shall show that a (·, ·) is coercive with respect to the norm
|‖ · ‖|, given that γ0 is sufficiently large and γ1 is positive and bounded away from zero. We also give a bound
on the piecewise constant part of the jumps at each edge.

Proposition 2.2. If γ0 > c0, with c0 sufficiently large and γ1 ≥ c1 > 0, then the following estimates hold

c |‖v‖|2 + α(λ, γ0)‖h−1/2[P0v]‖2
E ≤ a(v, v), (11)

for all v ∈ DF . Here α(λ, γ0) = (2µ + 3λ)(γ0 − c0) and the constant c is independent of h, γ0, γ1, µ, and λ.

Proof. We first note that the following inverse estimate holds
∑
E∈E

(
h1/2〈n · σ(v)〉, 〈n · ε(v)〉

)
E
≤ Ci

∑
T∈T

(σ(v), ε(v))T . (12)

This inequality is proved by scaling and finite dimensionality, cf. Arnold [1]. We also note that since (1) can
be inverted to yield

ε =
1
2µ

(
σ − λ

3λ + 2µ
trσ I

)
=

1
2µ

σD +
1

9λ + 6µ
tr σ I,

where σD = σ − tr σ I/3, we have that

σ : ε =
1
2µ

σD : σD +
1

9λ + 6µ
(tr σ)2 and σ : σ = σD : σD +

1
3
(tr σ)2,

so that σ : σ ≤ (2µ + 3λ)σ : ε. Thus

1
2µ + 3λ

‖n · σ(v)‖2
L2(E) ≤ (n · σ(v), n · ε(v))E .

Further, using that 〈n · σ(v)〉 is constant, we have, for each E ∈ E and for δ > 0, that

2(〈n · σ(v)〉 , [v])E = 2(〈n · σ(v)〉 , [P0v])E

≤ 2δ

2µ + 3λ

∥∥∥h1/2 〈n · σ(v)〉
∥∥∥2

L2(E)
+

2µ + 3λ

δ/2

∥∥∥h−1/2[P0v]
∥∥∥2

L2(E)

≤ 2δ
(
h1/2 〈n · σ(v)〉 , 〈n · ε(v)〉

)
E

+ (2µ + 3λ)(δ/2)−1
∥∥∥h−1/2[P0v]

∥∥∥2

L2(E)
(13)

where we used the Cauchy–Schwarz inequality followed by the arithmetic-geometric mean inequality. Using
these estimates we obtain

a(v, v) ≥ (1 − Ciδ)
∑
T∈T

(σ(v), ε(v))T + δ
∑
E∈E

(
h1/2〈n · σ(v)〉, 〈n · ε(v)〉

)
E

+(2µ + 3λ)(γ0 − 2/δ)
∥∥h−1/2[P0v]

∥∥2

E + 2µγ1

∥∥h−1/2[v]
∥∥2

E

≥ c|‖v‖|2 + (2µ + 3λ)(γ0 − c0)
∥∥h−1/2[P0v]

∥∥2

E

where we chose c0 = 2δ−1 = 4 Ci in the last inequality.

For the proof of our a priori error estimate we introduce the interpolation operator π : [H2(Ω)]2 → DF
introduced by Crouzeix and Raviart in [5], and constructed as follows. At the midpoint xm of the edge E, let

πu(xm) :=
1
|E|

∫
E

u,
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from which it follows, by application of Gauss’ theorem, cf. [5], that

∇ · (πu)|T =
1
|T |

∫
T

∇ · u. (14)

For this interpolant, we have the following basic estimates.

Lemma 2.3. The following estimates hold

‖u − πu‖L2(T ) + hT ‖u − πu‖H1(T ) ≤ Ch2
T ‖u‖H2(T ) , (15)

‖∇ · (u − πu)‖L2(T ) + hT ‖∇ · (u − πu)‖H1(T ) ≤ ChT ‖∇ · u‖H1(T ) . (16)

Proof. The proof of (15) can be found in [5], and (16) follows from (14).

For our a priori error estimate we shall need the following lemma.

Lemma 2.4. The following interpolation estimate holds

|‖u − πu‖| ≤ Ch
(
(2µ)1/2 ‖u‖H2(Ω) + λ1/2 ‖∇ · u‖H1(Ω)

)
. (17)

Proof. We first recall the trace inequality

h
−1/2
T ‖w‖L2(∂T ) ≤ C

(
h−1

T ‖w‖L2(T ) + ‖w‖H1(T )

)
∀w ∈ H1(T ),

see, e.g., Thomée [4]. For the inequality (17), the interior part is estimated directly using Lemma 2.3. For the
contribution from the jumps, we have using the triangle inequality

∥∥∥h−1/2[u − πu]
∥∥∥
E
≤

∑
T∈T

∥∥∥h−1/2(u − πu)
∥∥∥

∂T
.

Next, using the trace inequality and Lemma 2.3, we get
∥∥∥h−1/2(u − πu)

∥∥∥
∂T

≤ C
(
h−1

T ‖u − πu‖L2(T ) + ‖u − πu‖H1(T )

)
≤ ChT ‖u‖H2(T ) .

Furthermore,

(n · σ(v), n · ε(v))∂T = 2µ(n · ε(v), n · ε(v))∂T + λ(∇ · v,∇ · v)∂T ,

so we can use this split for the mean traction contributions, apply the triangle inequality, and estimate termwise:
∥∥∥h1/2∇ · (u − πu)

∥∥∥
L2(∂T )

≤ C
(
‖∇ · (u − πu)‖L2(T ) + hT ‖∇ · (u − πu)‖H1(T )

)
≤ ChT ‖∇ · u‖H1(T ) ,

and
∥∥h1/2n · ε(u − πu)

∥∥
L2(∂T )

≤ C
(
‖ε(u − πu)‖L2(T ) + hT ‖ε(u − πu)‖H1(T )

)

≤ C
(
‖u − πu‖H1(T ) + hT ‖u‖H2(T )

)
≤ ChT ‖u‖H2(T ) ,

and the lemma follows after summation.
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We are now ready to show our main result.

Theorem 2.5. With u the solution of (1)–(3) and U the solution of (4), we have under the assumptions of
Proposition 2.2,

|‖u − U‖| + α(λ, γ0)1/2
∥∥∥h−1/2[P0U ]

∥∥∥
E
≤ Ch

(
(2µ)1/2 ‖u‖H2(Ω) + λ1/2 ‖∇ · u‖H1(Ω)

)
,

where α(·, ·) is defined in Proposition 2.2 and C is a constant independent of h, γ0, γ1, µ, and λ.

Proof. By the triangle inequality, we have that

|‖u − U‖| ≤ |‖U − πu‖| + |‖u − πu‖|, (18)

and from coercivity, Proposition 2.2, and consistency, Proposition 2.1, it follows that

c|‖U − πu‖|2 + α(λ, γ0)
∥∥∥h−1/2[P0U ]

∥∥∥2

E
≤ a(U − πu, U − πu) = a(u − πu, U − πu). (19)

To estimate the right-hand side a(u − πu, U − πu), we use the continuity of the bilinear form to get

a(u − πu, U − πu) ≤ C|‖U − πu‖| |‖u − πu‖|. (20)

Combining (19) and (20), we find that

|‖U − πu‖| ≤ C|‖u − πu‖| (21)

and thus

a(u − πu, U − πu) ≤ C|‖u − πu‖|2.

Finally, using the interpolation estimates of Lemma 2.4, the bound follows.

Combining the error estimate in Theorem 2.5 with the elliptic regularity estimate

‖u‖H2(Ω) + λ ‖∇ · u‖H1(Ω) ≤ C ‖f‖L2(Ω) , (22)

which holds for instance in the case of a convex polygonal domain Ω, cf. Brenner and Sung [3], we obtain the
following estimate in terms of data, which shows that the method does not lock as λ → ∞.

Corollary 2.6. There is a constant C, independent of h, γ0, γ1, µ, and λ such that

|‖u − U‖| + α(λ, γ0)1/2
∥∥∥h−1/2[P0U ]

∥∥∥
E
≤ Ch ‖f‖L2(Ω) . (23)

In case (22) holds, we also have the following L2–norm estimate:

Corollary 2.7. With u the solution of (1)–(3) and U the solution of (4), we have

‖u − U‖L2(Ω) ≤ Ch2 ‖f‖L2(Ω) .

Proof. For a given w ∈ L2(Ω), define z as the solution to the problem

−∇ · (λ ∇ · zI + 2µε(z)) = w in Ω, z = 0 on ∂Ω,
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and Z as the corresponding numerical solution using (4). Setting e = u − U , we then have, using integration
by parts and Proposition 2.1, that

∑
T∈T

(e, w)T = a(e, z) = a(e, z − Z),

so that, by Corollary 2.6,
∣∣∣∣∣
∑
T∈T

(e, w)T

∣∣∣∣∣ ≤ C|‖e‖| |‖z − Z‖| ≤ Ch ‖w‖L2(Ω) |‖e‖|.

Using again Corollary 2.6 and setting w = e concludes the proof.

3. A nonconforming Galerkin method based on the Crouzeix–Raviart element

Restricting the discontinuous Galerkin method to the space of Crouzeix–Raviart functions

CR = {v ∈ DF : [P0v] = 0, for all E ∈ E}, (24)

we obtain the following simplified scheme. Find U ∈ CR such that

a(U , v) = l(v) for all v ∈ CR, (25)

where

a(U , v) =
∑
T∈T

(σ(U), ε(v)) + 2µγ1

∑
E∈E

(
h−1 [U ] · [v]

)
E

, (26)

and

l(v) =
∑
T∈T

(f , v)T . (27)

Using the theory developed in the previous section to this method we obtain the following theorem.

Theorem 3.1. The discontinuous Galerkin method with the CR-element (25) is the limit of the discontinuous
Galerkin method (4) as γ0 → ∞. If γ1 ≥ c1 > 0, then (25) has a unique solution U and the following error
estimates holds

|‖u − U‖| ≤ C1h ‖f‖L2(Ω) , (28)

and

‖u − U‖L2(Ω) ≤ C2h
2 ‖f‖L2(Ω) , (29)

with C1, C2 independent of µ, λ and h.

Proof. The fact that the solution to the discontinuous Galerkin method (4) tends to (25) as γ0 → ∞ implies that
the error estimates follow directly from Corollaries 2.6 and 2.7 since the constants are independent of γ0.

Remark 3.2. Our analysis extends directly to the case of higher order polynomials. For odd order of polyno-
mials we get the CR-family of elements, while for even the situation is not so simple, due to the fact that the
values of a polynomial at the Gauss points on the edges of a triangle is dependent in that case. For polynomials
of order two we refer to Fortin and Soulie [7], where it is shown that one obtains the usual continuous quadratic
polynomials together with a nonconforming bubble on each element.
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Figure 1. Exact solution.

Figure 2. Unstable solution corresponding to choosing γ1 � 1, and stable solution for γ1 = 1.

Remark 3.3. On rectangular elements a similar approach can be used for the element proposed by Rannacher
and Turek in [12], see Hansbo and Larson [9].

4. Examples

4.1. Convergence in a smooth case

We consider the unit square (0, 1) × (0, 1) with u = 0 on the boundary and with

f = ((λ + µ)(1 − 2 x1)(1 − 2 x2),−2µ x2 (1 − x2) − 2 (λ + 2µ)x1 (1 − x1))

corresponding to the exact solution

u = (0,−x1 x2 (1 − x1) (1 − x2)) .
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Figure 3. Second order convergence in the L2(Ω)−norm. The error relative to the number of
degrees of freedom is comparable to a conforming finite element method.

The material data were chosen as E = 1000 and ν = 1/10, where

λ =
νE

(1 + ν)(1 − 2ν)
and µ =

E
2 (1 + ν)

·

A mesh with the exact solution plotted in the nodes is given in Figure 1.
In Figure 2 we show the stability problem of the CR element corresponding to choosing γ1 too small, and

the stabilizing effect of the boundary jumps with an adequate choice of γ1.
In Figure 3 we show the convergence of the CR method (with γ1 = 0.5), and second order convergence is

attained, in accordance with Corollary 2.7. We also give the convergence rate of the corresponding conforming
linear finite element method. It is noticeable that the error relative to the number of unknowns is almost
identical for the nonconforming and conforming method.

4.2. Locking

On the unit square (0, 1) × (0, 1), we prescribe the boundary data as follows. At x1 = 0, x1 = 1, x2 = 0 we
set u = 0, while at x2 = 1, for 0 < x1 < 1, we set u = (1, 0) to obtain the closed cavity flow problem. In
Figures 4 and 5 we compare the linear conforming finite element method with the stabilized CR approximation
(γ1 = 0.5) for ν → 1/2. The CR element does not lock, while the conforming method, for ν = 0.4999, shows
clear signs of locking. Note that, due to lack of regularity, this problem is not covered by our a priori error
estimate and only serves to show that locking does not occur.
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Figure 4. Nonconforming and conforming solutions for ν = 0.49.

Figure 5. Nonconforming and (locked) conforming solutions for ν = 0.4999.
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