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EVALUATION OF THE CONDITION NUMBER IN LINEAR SYSTEMS
ARISING IN FINITE ELEMENT APPROXIMATIONS

ALEXANDRE ERN! AND JEAN-LUC GUERMOND?

Abstract. This paper derives upper and lower bounds for the £”-condition number of the stiffness
matrix resulting from the finite element approximation of a linear, abstract model problem. Sharp
estimates in terms of the meshsize h are obtained. The theoretical results are applied to finite element
approximations of elliptic PDE’s in variational and in mixed form, and to first-order PDE’s approxi-
mated using the Galerkin—Least Squares technique or by means of a non-standard Galerkin technique
in L'(Q). Numerical simulations are presented to illustrate the theoretical results.
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1. INTRODUCTION

The finite element method provides an extremely powerful tool to approximate partial differential equations
arising in engineering sciences. Since the linear systems obtained with this technique are generally very large and
sparse, the most practical way to solve them is to resort to iterative methods. Estimates for the convergence
rate of iterative methods usually depend on the condition number of the system matrix (see, e.g., [11,14]).
Although in general it is the distribution of eigenvalues rather than the condition number that controls the
convergence rate of iterative methods, a study of the condition number per se is still of interest. In particular,
it is important to assess this quantity as a function of the meshsize used in the finite element method.

It is well-known that second-order elliptic equations, e.g., a Laplacian, yield stiffness matrices whose Euclidean
condition number explodes as the reciprocal of the square of the meshsize; see, e.g., [3]. More generally, let
p € [1,+00] and denote by || - ||, the P-norm in RY, i.e., for all W € R, set

N 3
Wil = <Z |wz-|p> ! (1)
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30 A. ERN AND J.-L. GUERMOND

if 1 <p < +o0and |W|« = maxi<;<n [Wi|. Use a similar notation for the associated matrix norm over RV,
Define the ¢P-condition number of an invertible matrix A € RV by

kip(A) = Al A7 - (2)

Recent work on the conditioning of finite element matrices has focused on upper bounds for the Euclidean
condition number in the case of locally refined meshes; see, e.g., [1,3]. The objective of the present paper is to
give upper and lower bounds on ,(.A) for p € [1,4+00] when A is the stiffness matrix associated with the finite
element approximation of a linear, abstract model problem posed in Banach spaces. The analysis is restricted
to finite element bases that are localized in space, i.e., nodal bases. The case of hierarchical and modal bases
is not discussed. Technical aspects related to locally refined meshes are not addressed either.

This paper is organized as follows. Section 2 collects preliminary results. Necessary and sufficient conditions
for wellposedness of an abstract model problem are stated, and the finite element setting for the approximation
of this problem is introduced. Section 3 contains the main results of the paper. Section 4 presents various
applications to finite element approximations of PDE’s. Elliptic PDE’s either in variational or in mixed form
are first considered. Then, first-order PDE’s approximated using either the Galerkin-Least Squares (GaLS)
technique or a non-standard Galerkin technique in L'(f2) are analyzed. For most of the examples (with the
exception of the last one where the case p = 1 is considered), the analysis in Section 4 focuses on the case p = 2.
Numerical illustrations are reported in Section 5. Finally, Appendix A collects technical results concerning
norm equivalence constants and the existence of large-scale discrete functions in finite element spaces.

2. PRELIMINARIES

2.1. Wellposedness

Let W and V be two real Banach spaces equipped with some norms, say || - ||w and || - ||v, respectively.
Consider a linear bounded operator
AW — V. (3)
Recall that as a consequence of the Open Mapping Theorem and the Closed Range Theorem [15], the following
holds:
Lemma 2.1. The following statements are equivalent:
(i) A is bijective.
(ii) There exists a constant oo > 0 such that

Vwe W, [[Aw|lv = aflwllw, (4)
Vo' e V', (AT =0) = (v =0). (5)

Another way of interpreting A consists of introducing the bilinear form a € L(W x V’;R) such that
V(w,v") e W x V', a(w,v") = (v, Aw)y v, (6)

where (-, )y v denotes the duality paring. Owing to a standard corollary of the Hahn-Banach Theorem, for
all f €V and for all w € W, Aw = f if and only if a(w,v') = (V/, f)v+ v for all v/ € V'. Then, a reformulation
of Lemma 2.1, henceforth referred to as the BNB Theorem [2,8,13], is the following:

Theorem 2.2 (Banach—Necas—Babuska). The following statements are equivalent:

(i) For all f €V, the problem
{ Seek u € W such that

a(u, ’l)/) - <Ul, f>V’,V7 W' € Vla
s well-posed.
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(ii) There exists a constant oo > 0 such that

/
inf sup a(wi,vl) > a, (8)
weW yrev [[wlw[v'][v-
W eV, (VweW, a(w,v')=0) = (1 =0). 9)

If V is reflexive, the above setting is unchanged if V is substituted by V/ and V' by V. As an illustration of a
nonreflexive situation, the reader may think of W = Wh1(Q), V.= L1(Q), V' = L>*(Q), and A : W > u —
u+u, €V.

Remark 2.3. When supremun and/or infimum over sets of functions are considered, it is always implicitly
understood that the zero function is excluded from the set in question whenever it makes sense. This convention
is meant to alleviate the notation.

2.2. The finite element setting

Let © be an open domain in R%. Let n be a positive integer. In the sequel, we assume that W and V are
Banach spaces of R"-valued functions on Q. For p € [1,+00], equip [LP(Q)]" with the norm [|w|rrq) =
(Jo>m, |wl|p)% if p # oo and for p = oo, set ||w|[p~) = mMaxicicyesssupg |wi|. Let (w,v)r2) =
Jo 2ot wiv; denote the [L?(Q2)]"-inner product. Likewise, for a measurable subset K C Q, set (w,v)p2(x) =
fK Z?:l WiV

To construct an approximate solution to (7), we introduce a family of meshes of Q that we denote by {7}, }r>0.
The parameter h refers to the maximum meshsize, i.e., h = maxge7, hix where hx = diam(K). Let W}, and V},
be finite-dimensional approximation spaces based on the mesh 7;. These spaces are meant to approximate W
and V' respectively; henceforth, W}, is referred to as the solution space and V}, as the test space. Let p € [1, +00]
and denote by p’ its conjugate, i.e., % + i = 1 with the convention that p’ = 1 if p = 400 and p’ = +oo if
p = 1. We assume hereafter that dim(W},) = dim(V4) and that there is p € [1, +00] such that W), C [LP(Q)]"
and Vj, C [LP (Q)]™. The spaces Wj, and Vj, are equipped with some norms, say || - ||w, and || - ||y, , respectively.

Let A: W — V be an isomorphism. Problem (7) is approximated by replacing the spaces W and V' by their
finite-dimensional counterparts, yielding the approximate problem:

{ Seek uy, € Wy, such that (10)

an(un,vn) = (vn, fln, Yon € V.

Problem (10) involves a consistent approximation ay, of the bilinear form a and a consistent approximation of
the linear form in the right-hand side. The way (vy,, f);, is defined is not important for the present investigation.
Henceforth, we assume

. an(wn, vn)
inf sup —————
wn€Wh v, €V, HwhHWh

This, together with the fact that dim(W3) = dim(V},), implies that the discrete problem (10) has a unique
solution.

Let N = dim(W}3) = dim(V4). Assume we are given a basis for Vi, say {¢1,...,¢on}. The elements in this
basis are hereafter referred to as the global shape functions of V},. Likewise let {11, ...,¢ N} be the global shape
functions in W},. For a function v, € V},, denote by V € R¥ the coordinate vector of vy, relative to the basis
{1, 0N}, e, vy = Zivzl Vip; € Vi. Denote by Cy,, : V), — RY the linear operator that maps vectors in
V}, to their coordinate vectors in RY | i.e., Cy, v, = V. Similarly, denote by Cyy, : W, — R the operator that
maps vectors in W), to their coordinate vectors in RY. It is clear that both Cy, and Cy, are isomorphisms.
Denote by (-, )y the Euclidean scalar product in RY.

> 0. (11)

vnllv;,
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Define the so-called stiffness matrix A with entries (ah (%5, %))1 <ij<N' This definition is such that for all

(wh,vp) € Wp, X Vi, (Cy;, v, ACw, wr) N = ap(wp,vp). The discrete problem (10) yields the linear system:

{ Seek U € RY such that

AU = F, (12)

where the entries of F are F; = (p;, f)n for 1 <i < N. The solution up, to (10) is then uj = C;V}LL{.

2.3. Norm equivalence constants
Since W, and V}, are finite-dimensional and since Cyy, and Cy, are isomorphisms, it is legitimate to introduce

the following positive constants

lwnll e (o) 1wl e ()

Mg pp = inf ———= Mspp= sup ————— 13

r wp€Wh HCthhH:D, - wp €W, Cthh”P, ( )
||UhHLp’(Q) \UhHLp/(Q)

Mepp = inf T—=——— Mipp = sSup ————- 14

PP Vi [C, vl P eV [Cv, vl 14

Here, the subscripts s and ¢ refer to the solution space and the test space, respectively. The constants introduced
in (13)—(14) are such that

Vwp € Wiy mspnlWIp < llwnllzr@) < Mo palWllp, (15)
Von € Vs e p Vi < llonllpor ) < Mepal Ve (16)

with W = Cw, wy, and V = Cy, v,. Henceforth, we denote

Ms,p,h Mt,p,h

Ks,p,h = ) Kt,p,h = ) Kp,h = \/Ks,p,hKt,p,h- (17)

Ms,p,h Mt,p,h

It is possible to estimate myg p p and M, 5 (vesp. mypp and M, ) when Wy, (resp. Vj,) is a finite element
space and the global shape functions are such that their support is restricted to a number of mesh cells that
is uniformly bounded with respect to the meshsize. For instance, if the mesh family {7, },~0 is quasi-uniform,
Ks,p,h and k¢ p p are uniformly bounded with respect to h; see Appendix A.

3. BOUNDS ON £,(A)

The goal of this section is to derive upper and lower bounds for the ¢P-condition number of the stiffness
matrix A.

3.1. Main results

Introduce the following notation:

app = 1inf sup an(Wh, Oh) : (18)
wn€Wh v, eV, [[WallLe@) VRl Lo o)
Wpp = SUp  Sup a1 (Wh, Vh) (19)

wp EWp v €V, ”wh”L"(Q)thHLP/(Q)
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A first result is the following;:

Theorem 3.1. Under the above assumptions,

Wh, k2 Smh < (A) < k2, Seh (20)

h ,
P oy p Qp,h

Proof. (1) Upper bound on ||A|,. Consider W € RY. Then, owing to definition (19) and using the notation
Cvy, v, =V and Cyw,wp, =W,

AW, V)N ap(wn, vp llwnll ey 1vrllLey @
AW, = sup VIV (ton, o) ©) @ 1w,
verv Wy vers Tonlorollonllorg VI VI

HwhHLP Q HUhHLP/ Q
©@ @,

ST vers VI
Using inequalities (15)-(16) yields || AW||p, < wp.h Msp.n My pn ||W||p- That is to say,
[Allp < wp.n Msp.n Mep h-
(2) Upper bound on [ A~!||,. Using again (15)—(16) together with definition (18) yields

an(wn,vp)

O Mo Wy < cpnllwnllirio) < sup 05 o
LP'(Q

VR EVR

AW, V)N Vlp _
= sup EPIIN gy qup I <,
VERN ||Uh|\Lp’(Q) VERN HUhHLP’(Q)

Hence, setting Z = AW, we infer oy, p, mspp [|A1Z||, < m;; n I Z]lp- Since Z is arbitrary, this means

B 1 _
A7 < o mep e

p,

The upper bound in (20) is a direct consequence of the above estimates.
(3) Lower bound on [ A~!|,. Since W}, is finite-dimensional, there is wy, # 0 in W}, such that

B ap(wp,vp)
Qpp = SUp .
oneVi, lwnllze @) llonll Lo )

As a result, setting W = Cw, wy, and V = Cy, vy, yields

AW, V)N ap(wn, vy HUhHLP’ ) lwnllLe @
AW, = sup VIV (ton, 1) @ @ 1),
Ty Twnll@ ol VWL

< apn Mepn Mspn [W]p-

Hence,
1

-1 -1 -1
th,p,h Ms,p,h S HA Hp

(4) Lower bound on ||Al|,. Since W}, is finite-dimensional, there is wy # 0 in W}, such that

B an(wn,vp)
Wp,h = SUP :
oneVi [wallze @) lonll Lo )
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This implies

Ah(Wh, Un
MWl < lnl oo anltun tn)

Wp,h vpeVy th”};p/(g)

1 (AW V)n [Vl 1 .
= sup v . < —my \Ds hH-AWHp ,p,hH-AHpHWHp
wph vnevi, VI ||”h||LP’(Q) Wp,h Wp,h
Since W # 0 this yields
Wp,h Mis p, e Mt p.h < [ Allp-

The lower bound in (20) easily follows from the above estimates. (]

To account for a possible polynomial dependence of oy, and wp p on h, we make the following additional
technical hypotheses:

0 < ¢ ffhmmfaphh 7 < 400,

Iy, 21

7 0 < cyp = limsupay, p A7 < 400, (1)
0<cy= h}?jgprvh h? < 400,

36 22

’ 0 <cop = hI}ILlSBlpwnh R < +oc. (22)

As a consequence of Theorem 3.1, we deduce the following:

Theorem 3.2. Under the assumptions (21)—(22), the following holds true: for all € € ]0,1[, there is he such
that for all h < he,

g co
(1— ) nf (o2 70 < o (A) < (1+€) 2 2, 170, (23)
sup Cmf
Proof. Let € €]0,1].
(1) There is he such that for all b < he, (1 — §)cfieh? < app and wpp < (1—|— ) caph™ o Then, apply
Theorem 3.1 to deduce the upper bound.
(2) Owing to the definition of cg,,, there is h. such that for all 0 < h < he, there is wy, € W), satisfying

ap(wp,vp)

€
sup (1 + _) up P
oneVi, [wnllLe @) lonll Lo ) 2) S

Then, proceed as in step (3) of the proof of Theorem 3.1 to derive the lower bound
—1 €1 — —
A Hp > (1+ 5) (¢ sup) M ,p, M,p, h™
(3) The definition of ¢, implies the existence of he such that for all 0 < h < he, there is wy, € W), satisfying

ah(wha Uh)
wrllLe@)llvnll Ly (Q)

(1—=)eh™% < sup

m —

2 v €V

Then, proceed as in step (4) of the proof of Theorem 3.1 to infer ||A[, > (1 — &) ¢t M pn Mipp h ™. The
lower bound on k,(.A) then results from the above estimates. O
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Remark 3.3. Observe that in (20) and (23) the lower bound is multiplied by n;i and the upper bound is
multiplied by n;h; hence, these estimates are sharp only if Kk, = /Rsprftpn is uniformly bounded with
respect to h. It is shown in the appendix that this holds true when the global shape functions {¢1,...¢n} and
{%1,...9¥n} spanning V}, and W), respectively have localized supports. The definition of o j, and wy, , must be
modified if the bases of V};, and W), are hierarchical.

3.2. Estimates based on natural stability norms

Introduce the quantities

an (W, vn)

ap = inf  sup 24

wnf 52 Tonllw Tonllv,” (24)

on= sup sup —2n(wmUR) (25)
wneW, vneVi, [[wnllwy, [[vn v,

In general, one may expect that the norms of W}, and V}, are selected so that «y is uniformly bounded from
below away from zero and wy, is uniformly bounded. Hence, bounding x,(A) in terms of o and wy, may yield
valuable information.

For this purpose, we make the following technical assumptions:

Jesp >0, Ywn € Wh,  cspl|wnllLeo) < |lwnllw,,

(26)
lvnllva, (27)
(28)
(29)

IN

Jerp >0, Vop € Vi, apllonll e
ds > 0,3csy, Ywp € Wh, ||wh||Wh < Csjhisn'LUhHLP(Q),
dt > 0,3cyr, Yo € Vi, ”vhHVh < Ct1h7t|‘vh||Lpl(Q).

Estimates (26) and (27) are Poincaré-like inequalities expressing the fact that the norms equipping W}, and
Vi, control the LP-norm and the L”-norm, respectively. In other words, the injections Wj, C [LP(€)]" and
Vi, C [L¥ (Q)]™ are uniformly continuous. Furthermore, (28) and (29) are inverse inequalities. When the mesh
family {75 }n>0 is quasi-uniform, the constants s and ¢ can be interpreted as the order of the differential operator
used to define the norms in W}, and V}, respectively.

As a consequence of Theorem 3.1, we deduce the following;:

Corollary 3.4. Under the assumptions (26)—(29), the following bound holds:
Vh, kp(A) < /@s,p,hcﬁ /@t,p,hct—l Dh st (30)
Csp Ctp Qp

Proof. Let us estimate a, p and wp j.
(1) It is clear that

ap(wp,vp) 1 inf  sup ap(wp,vp)

wpllw, lonllv,, ~ cspetp wn€Wi y,ev,

ap = inf  sup
Wh€Wh v, €V,

whl| Lo lonll o )

Hence oy, > csp cip aip-
(2) Moreover,

Wpn = sup sup an(Wh, vn) < sup [[wh | w, [[vallvi

<wpesrer K0
wneWy vneVi, [WallLe@)lonll o (o) wnew, [WallLe@) vnevi, vnllLe (@)

Hence, wp p < ¢srcipwp h™ 5L
(3) Conclude using Theorem 3.1. O
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Remark 3.5. It may happen that (30) is not sharp; see Section 4.3 and (68).
In addition to (26)—(29), we assume the following:

Qp,h

0 < dy; = liminf h* < +o0,
h—0 Qap,
du, (31)
. Qp h
0 < dg,p, = limsup PRt < 400,
h—0 ah

e e W st
0 < df; = liminf b psti—v o +00,

h—0  Wp
Jv, w (32)
0 < dg,, = limsup e R )
h—0 Wh

The constants 1 and v are meant to measure the possible default to optimality of Corollary 3.4. Proceeding as
in the proof of Theorem 3.2, it is clear that the following holds true:

Corollary 3.6. Under the assumptions (26)—(29) and (31)—(32), the following holds true: for all € € ]0,1],
there is he such that for all h < h,

d¥ _o Wh 5 _ o dg Wh , o
1— inf 2 *h h—s t+ptv A) < (1 sup 2 Wh Bs ter,er' 33
(1-0 gt wi o < Rp(A) < (14 2 2 o (33)

4. APPLICATIONS

This section presents various applications of the theoretical results derived in Section 3 to finite element
approximations of PDE’s posed on a bounded domain €2 in R¢. For the sake of simplicity, we assume that § is
a polyhedron. Let {7}, }r>0 be a shape-regular family of meshes of €.

4.1. Elliptic PDE’s in variational form

Consider the Laplacian with homogeneous Dirichlet boundary conditions. Set W = H}(Q), V = H~1(Q),
and A : W 5 w — —Aw € V. Clearly A : W — V is an isomorphism. Introduce the bilinear form
a(wl,wg) = fQ Vwi-Vws, V(wl,wg) eW xW.

Let W}, be a finite-dimensional space based on the mesh 7;,. We assume that W, C W, i.e., the approximation
is H'-conforming. We assume that W}, is such that there is ¢, independent of h, such that the following global
inverse inequality holds:

Ywyp, € Wy, Hth”L?(Q) <ch™! ||wh||L2(Q). (34)
This hypothesis holds whenever W}, is a finite element space constructed using a quasi-uniform mesh family;
see, e.g., [4,5,8,10].

Consider the approximate problem:

Seek up, € Wy, such that
{ (3)

a(un,vn) = (f,vn)r2Q),  Yon € Wh,

for some data f € L?(Q2). Let A be the stiffness matrix associated with (35). The main result concerning the
Euclidean condition number of A is the following:

Theorem 4.1. If the mesh family {Tp}n>0 is quasi-uniform and (34) holds, there are 0 < ¢; < ca, both
independent of h, such that
cirigy h? < ka(A) < carij h™2 (36)
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Vw2
Proof. (1) For wy, € Wy \ {0}, define R(wp) = Ww Then
L2Q)
agp = inf R(wp), wop = sup R(wp). (37)
wp €W}, wp €W,

(2) Let zp, be given by Lemma A.5 with Z = H}(Q), Z, = W), equipped with the H'-seminorm, and L = L*((2).
Since R(Z,) < ¢, we infer s, < R(Z,) < c uniformly in h. Moreover, the Poincaré inequality in H} () implies
that oy p, is uniformly bounded from below away from zero.

(3) Letting wy, in (37) be one of the global shape functions in W), it is clear that ws , > ch~2. Moreover, owing
to the inverse inequality (34), wa ) < /h™2.

(4) To conclude, use Theorem 3.1 (or Thm. 3.2 with v =0 and § = 2). O

Remark 4.2. Observe that owing to the quasi-uniformity of {7,},>0 and Lemma A.1, the constant ko) =
/Fs.2,hkt 2.5 is bounded from below and from above uniformly with respect to h when the global shape functions
have localized supports.

Remark 4.3. The Euclidean condition number k2(.A) can also be estimated using Corollary 3.4. One readily
verifies that «j can be bounded from below uniformly with respect to h, wp can be bounded from above
uniformly with respect to h, and that s = ¢t = 1. Hence, (30) yields s2(A) < ch™2, i.e., the estimate is sharp.
One also verifies that gy = v = 0 in (31)—(32), confirming the optimality of Corollary 3.4.

Remark 4.4. Estimate (36) extends to more general second-order elliptic operators, e.g., advection-diffusion-
reaction equations.

4.2. Elliptic PDE’s in mixed form

In this section we investigate the following non-standard Galerkin technique introduced in [6] to approximate
the Laplacian in mixed form. Let H(div;Q) = {v € [L2(Q)]¢; Vv € L2(Q)}, W = H(div; Q) x H}(Q), and
V = [L3(Q)]? x L?(). Introduce the operator

AW > (u,p) — (u+Vp,V-u) e V. (38)
One readily verifies that A : W — V is an isomorphism. For (w,v) € W x V, define the bilinear form

a((u,p), (v,q)) = (u,v)L2() + (VP,v)r2(Q) + (V-u, ) r2(0)- (39)

By analogy with Darcy’s equations, u is termed the velocity and p the pressure.

The non-standard Galerkin approximation consists of seeking the discrete velocity in the Raviart—Thomas
finite element space of lowest order and the discrete pressure in the Crouzeix—Raviart finite element space.
Denote by Fy, }‘,? , and .7-'}1 the set of faces, boundary faces, and interior faces of the mesh, respectively. Define

Xn = {un; VK € Tp, up g € RTo; VF € Fi Jplun-n] =0}, (40)
Yh:{thVKEThaPMK GPI;VFGJ:ha fF[[ph]] :O}a (41)

where RTy = [Po]? @ 2P, [us-n] denotes the jump of the normal component of uy, across interfaces, and [ps]
the jump of pj, across interfaces (with the convention that a zero outer value is taken whenever F € F?). Test
functions for both the velocity and the pressure are taken to be piecewise constants. Introducing the spaces
Wh = Xh X Yh and

Vi = {(vn, an); VK € Th, v € [Po]® and gy, 5 € Po}, (42)
and defining the bilinear form ap € L(W}, x Vj,; R) such that

an((un, ), (Vn, qn)) = (un,vn)r2@) + (Veun, qn)r2 ) + Z (VPn,vn) L2y (43)
KeT,
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the discrete problem is formulated as follows:

{Seek (up, pn) € Wp, such that

an((un,pn), (Vs qn)) = (fan)L2),  V(vh,qn) € Vi, (44)
for some data f € L?(Q). Note that the approximation setting is conforming on the velocity and non-conforming
on the pressure. Moreover, it is readily checked that the total number of unknowns in (44) equals the total
number of equations. Indeed, the former is the number of faces plus the number of interior faces, the latter is
equal to (d+ 1) times the number of elements, and these two quantities are equal owing to the Euler relations.

Equip W}, with the norm

s )3, = llunllZ2g) + IV -unllZz0) + 1PalZ20) + D 1VPRl 7200, (45)
KeTy,

and equip Vj, with the norm || (va, @)%, = llvnll72(q) + [lanll72(q)- In the framework of the BNB Theorem, the
main stability result for (44) is the following:

Lemma 4.5. There are ¢ > 0 and hg such that for all h < hg,

inf Sup ah((uhaph)ﬂ (Uhth)) > c. (46)

(uluph)ewh (vh,,qh)EV},, H(U’h)ph)HW;L (Uh) Qh)| Vh

Proof. Since this is a non-classical result, the proof is briefly sketched; see [6] and [8] for further details.

(1) Let (up,pn) € W Denote by uy, the function whose restriction to each element K € 7}, is the mean value
of up. Use a similar notation for p,. Denote by V}py, the function whose restriction to each element K € 7p, is
Vpnii- Set vp = TUp + Vppn and g, = 2P, + V-up. Note that the pair (va,qn) is in V}, since the gradient and
the divergence terms are piecewise constant owing to the present choice of discrete spaces. Hence,

an((un, pn), (0n, n)) = (W, Tn)z2() + IV-unlliz + Y IVoRll7zcx)
KeTy,

+2(V-un, by)12(0) + Z (un, Vor) 2xy + (Vor,n) L2 (i)
KeT,

= ||ﬂh||2L2(Q) + Hv'uhH%%m + Z HVth%?(K)a
KeT,

since (V-un, pp)r2(q) + ZKeTh (un, Von)r2(x) = 0.
(2) For up € X, one readily verifies that VK € Ty, Va € K, up(z) = up + é(:c — gx)V-up where gk is the
barycenter of K. This implies that there is ¢, independent of h, such that

Yuy, € Xh, HuhHL2(K) < HﬂhHLQ(K) +chK||V~uh||L2(K).

Hence,
an((wn, pn), (0hs n)) > cllunllizi) + (1= B V-unlZa) + Y IVPRlZ2 -
KeTy,

If h is small enough, (1 — ¢’h?) is bounded from below by %
(3) Use the extended Poincaré inequality (see, e.g., [7,8] for a proof)

Vpr € Y, Y IVorllZacry = cllpallizg),
KeTy,
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and the above estimates to conclude that an((un,pn), (vn,qn)) > ¢ || (un, p) I3y, = <1l (un, pr)llw, | (0n, an)llvi, -

O

We now estimate the Euclidean condition number of the stiffness matrix A resulting from (44). Our main
result is the following:

Theorem 4.6. If the mesh family {7}, }n>o0 is quasi-uniform, there are 0 < ¢1 < co, both independent of h, such
that

cm;j h™t < ko(A) < cys%yh hL (47)

Proof. (1) Owing to (46),

sup an((un, pn), (vn, qn))

2 c||(un, pr)llw, = cll(un, pr)llL2()-
wnaneve  1wnan)llv, ' @

Hence, agp > c.

(2) Take up, = 0 and p, = Zj, given by Lemma A.5 with Z = H}(Q), Z, = Y, N HY(Q) equipped with the

H'-seminorm, and L = L?(f2). Then,

an < sup an((0, Zn), (va, qn)) <

(woman)evi 11005 Z0)ll L2l (vn, gn) | 2 (o)

(3) Since the mesh family {7} } 10 is quasi-uniform, it is clear that an inverse inequality of the form (34) holds
in Wj,. This implies that wa j, < ch~!. Moreover, setting u;, = 0 and letting pj, be one the global shape functions
in Y}, say 1;, yields

wap Z sup ah((07w’i)a (U}th)) Z c/hfll
nan)evi 1005%0) |21 (vns an) [l 22 ()

(4) To conclude, use Theorem 3.1 (or Thm. 3.2 with v =0 and § = 1). O

Remark 4.7. As for elliptic PDE’s in variational form, k2(.A) can also be estimated using Corollary 3.4. One
readily verifies that oy, and wy can be uniformly bounded from below and above, and that s = 1 and ¢t = 0.
Hence, (30) yields ka(A) < ch™!, i.e., the estimate is sharp. One also verifies that 4 = v = 0 in (31)-(32),
confirming the optimality of Corollary 3.4.

Remark 4.8. It is also possible to consider a standard Galerkin approximation to the Laplacian in mixed form.
In this case, the solution space and the test space are identical and given by Wy, = Vj, = X x Z; where X,
is defined by (40) and Zj, denotes the space of piecewise constant functions. The discrete problem is (44) with
the bilinear form

an((un, pn)s (Vhs qn)) = (wn, vn) 2 ) — (Vvn, pn)r2) + (V-un, qn) L2 )- (48)

One readily verifies that the Euclidean condition number of the resulting stiffness matrix scales as h ™!, i.e., the
same asymptotic behavior as for the non-standard Galerkin approximation is obtained. This result is essentially
due to the fact that the mixed form only involves first-order PDE’s.

Remark 4.9. Although the Euclidean condition number of the stiffness matrix associated with the mixed form
is one order smaller in h than that associated with the variational form, the matrix in the first case is larger
than that in the second case so that it is not a priori clear to decide which linear system is the easiest to solve
by an iterative method.
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4.3. First-order PDE’s and GaLS

Let 3 be a vector field in RY, assume 8 € [L>®(Q)]?, V-3 € L>=(f), and define the inflow and outflow
boundaries
00~ = {x € 9Q; B(z)-n(z) < 0}, o0V = {x € 9Q; B(z)-n(x) > 0}, (49)
where n is the outward unit normal to Q. Let p be a function in L>°(€Q) and consider the advection-reaction
equation

{ (50)
U‘BQ— = 0.
To give a mathematical meaning to (50), introduce the so-called graph space
G = {w e L*(Q); B-Vw € L*(Q)}. (51)
Equipped with the graph norm |w||¢ = ||w| r2(q) + ||3-Vwl||12(q), G is a Hilbert space. Assume that
C'(Q) is dense in G, (52)
99~ and 90" are well-separated, i.e., dist(9Q~,907) > 0. (53)

Hypothesis (52) amounts to a regularity assumption on ; for instance, it holds whenever (2 is Lipschitz. Owing
to (52)-(53), it can be shown (see, e.g., [9]) that the trace operator 7 : C1(Q) 3 v — vjg9q € L*(0;|6-n))
extends uniquely to a continuous operator in G. Consider the spaces

W ={w e G; 7(w) =0}, V =L*Q), (54)
and define the differential operator
A:Wsw — pw+(3VweV. (55)
It is clear that A is continuous. Moreover, assuming that there is pg > 0 such that almost everywhere in 2,
pla) — AV-B(x) = po > 0, (56)

it can be shown that A : W — V is an isomorphism; see, e.g., [9].

We want to illustrate Theorem 3.1 by analyzing the Euclidean condition number of the stiffness matrix
associated with the GaLS approximation of (50). To this end introduce a finite-dimensional approximation
space W}, based on the mesh 7;,. Assume that W), C H'(Q) NW, i.e., the approximation is H!-conforming,
and assume that (34) holds. Introduce the bilinear form a € L(W x V;R) such that a(w,v) = (Aw,v)r2(q) and
set

ap(w,v) = a(w,v) + Z 6(hk)(Aw, AU)L2(K)7 (57)
KeTy,

where §(hx) = cgarshx and cgars is a (user-defined) mesh-independent constant. Assume f € L?*(). The
GaLS approximate problem consists of the following [12]:

Seek uy, € Wy, such that
{ )

an(un,vn) = (fivn)r2@) + 2 ke, 0(hi)(f; Avh) L2(k),  Yon € Wh.

Note that the solution space and the test space are identical here, i.e., V};, = Wj. Define the symmetric bilinear
form as € L(W x W;R) such that

V(wl,wg) eW x W, as(wl,wg) = %((Awl,’LUQ)L2(Q) + (U}l,A’LUQ)L2(Q)). (59)
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It is clear that as is positive definite since
Ywe W, as(w,w) = alw,w) > pOHwH%z(Q). (60)

The main result of this section is the following;:

Theorem 4.10. Assume that there is a nonempty open subset of 0, say g, in which infq, ||3|| > 0 and B is in
CO1(Qp). Assume that the mesh family {T,}n>o is quasi-uniform and (34) holds. Then, there are 0 < c1 < c2
and hg such that for all h < hyg,

cm;% h < ka(A) < Cgli%yh Bt (61)
Proof. (1) Owing to (60),
po < inf M;wh) < inf sup an(Wn, vn) = Qap,
wn €W [[whll32 gy ~ wn€Wa v, ew, llwnllLzollvall 2o

i.€., po < Q-

(2) To derive a bound on as p, use Lemma A.5. Set Z = W, Z,, = W), L = L*(Q), and equip Z}, with the
norm || zxl|z, = |[Azn||2(0). Lemma A.5 implies that there exists ¢ > 0 and h such that for all h < h, there is
Zn € Wi\{0} satisfying ||AZn| 12(0) < €l|Znll12(q)- Then using this bound together with

an(Zn,vp)
Znll 2o llvnll L2

agp < sup
v €W}

a direct computation using (34) shows that ag p is bounded uniformly with respect to h.
(3) Using again (34) it is clear that there is ¢, independent of h, such that wq ), < ch™1.
(4) A simple computation yields

hk
an(uwnywn) 2 [ (0= Hlplo)ut+ 3 %0 [ 5wl
Q KET, K

Assume that h is small enough so that py — h||p|\%w(9) > 0 and there is a mesh cell Ky C €. Then for all
wp € Wh;

h 1— _
an(wp, wp) > go / §|ﬁ'vwh|2 — (B = B)-Vwn |,
Ko

where 3 is the value of 3 at the barycenter of K. Then it is always possible to find a global shape function ¢;
that is nonzero on Ky and such that

1B-Villra(re) = ch™ Hlwillrzre) = A il L2
where ¢’ is positive and independent of h. Hence, if h is small enough

ah(%‘, %‘)
Wah 2 T
H%||L2(Q)

>t

(5) To conclude, use Theorem 3.1 (or Thm. 3.2 with v =0 and § = 1). O
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We now estimate the Euclidean condition number k2(.A) using the natural stability norms. For the GaLS
technique these norms are

[wlf 4 = as(w,w) + Y 3(hx) | Aw| 72y,
KeT,

Yw € W, ) ) I (62)
lwllh s = lhwllia+ D hitlwllfeg.
KeTy,
The introduction of the above norms is motivated by the following stability and boundedness results:
Vw e W, an(w,w) 2 [lwl} 4, (63)
Yw € W, Ywy, € Wy, ah(w,wh) <c ||w|\h,%|\wh|\h¢A, (64)

from which the convergence analysis of the GaLS approximation directly follows; see [8] for more details.

Proposition 4.11. Equip W), and Vj, with the norm || - ||n,a to define oy, and wy, in (24)~(25). Then if the
mesh family {Tp}n>0 is quasi-uniform, there is ¢, independent of h, such that

ap > 1, (65)
wp, < ch_%7 (66)
1
=t==.
5 5 (67)

Proof. (1) Estimate (65) is a direct consequence of (63).
(2) Owing to the quasi-uniformity hypothesis and (60),

— (G c . _
lwllf 2 = llwllf 4+ ch™HlwllFz) < llwllf 4 + gh fag(w,w) < (1+ ool Dllwlli a-

The bound (66) follows readily from (64).
(3) Statement (67) is an easy consequence of (34). O

Remark 4.12. If we apply Corollary 3.4, we obtain

ko(A) < choph™ 3. (68)

This result shows that Corollary 3.4 may not be optimal; in fact, one readily verifies that y = 0 and v = % in

Corollary 3.6.

4.4. First-order PDE’s in L'
Let Q =]0,1[, f € L'(£2), and consider the following problem:

pu+ Uy = fa
69
{ u(0) =0, (69)
where p is a nonnegative constant. This problem has a unique solution in the framework
W = {w € WhH1(Q); w(0) = 0}, V = LYQ). (70)

Define the operator
A:Wswr— pw+w, € V. (71)
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A€ L(W;V) is an isomorphism, implying that
Ja >0, Vw e W, |[Aw|p1q) > of|w|lwii(g)- (72)
Define the finite element spaces
W, = {wy, € C°(Q); VK € Tp,, wyic € P1; wi(0) = 0}, (73)
Vi, = {vn € LY(Q); VK € Ty, vy i € Po}. (74)

The discrete solution space W}, consists of continuous piecewise affine functions while the test space V}, consists
of piecewise constant functions. Introduce the bilinear form

Wwo) W x V', afw,0) = [ (oot woe (75)

Clearly a € L(W x V';R) where V' = L>°(Q)). The discrete problem is the following:

Seek uyp € Wy, such that
{ h h (76)

uh,vh fO fon, Yo, € Vp.

Obviously W}, and V}, have the same dimension, say IV, the number of mesh cells. In the framework of the BNB
Theorem, the main stability result for (76) is the following:

Lemma 4.13. There is v > 0 and hg such that for all h < hy,

a(wp,vp)
wp|lwr@)llvnllpe ) —

inf  sup (77)

wh€EWh v, €V,

Proof. Let wy, € Wi \{0}. Denote by sg the sign function, i.e., sg(x) = ‘—i‘ if 2 is not zero and sg(0) = 0. For
wp € Wh, let wy, € Vi, be the function such that the restriction of wj, to a mesh cell K is the mean value of
wy, over this mesh cell. Set zp, = sg(pwWp, + wn,5). Clearly pwy + wp, » # 0, otherwise wy, would be zero; hence,
|2l Lo= (@) = 1. Observing that z; € V},, we infer

sup a(twn, vn) > a(Wn, 2h) Z th/ wh+/ Wh,z 2k

onevi onllze@) ~ lonlli=@) &
= Z ch/ wh+/ whazh—/ (PWh + wh o) 2n
KET,

= l[pwh + whzllLr = lpwn + whallr = [lp(wn —@h)]| L
> aflwnllwra@) — chl|wn|lwiag)-
The conclusion follows readily. O

Let {t1,...,%n} be the standard P; nodal shape functions of Wy. Let {¢1,...,n} be the standard Pg
shape functions of V},, i.e., the characteristic functions of mesh cells. Let A be the stiffness matrix with entries
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(a(wj, wi))lgi,jgN' The main result of this section is the following:

Theorem 4.14. If the mesh family {Tn}r>o is quasi-uniform, there are 0 < ¢1 < co and ho such that for all
h S h07
ek bt < ri(A) <eani b (78)

Proof. (1) From Lemma 4.13, it is clear that aq,j > 7.

(2) To derive a bound on a4 5, we use Lemma A.5. Set Z = W, Z, = Wj,, L = L'(Q2), and equip Z;, with the
norm || - |ly1.1¢0). Lemma A.5 implies that there exists ¢ > 0 and h such that for all i < h, there is Z, € Z,\{0}
satisfying ||2hHW1,1(Q) < 5||§hHL1(Q). Since

a1 < Sup — a(Z, vn) )
VR EVR HZhHLl(Q)HUh”Ll(Q)

one readily infers that o j is bounded uniformly with respect to h.
(3) Using standard inverse inequalities yields wy p, < ch™!.
(4) Let 9; be a shape function in W), and set v, = sg(v;). Then, vy, € Vi, ||vnll L) = 1 and

a(i,vn) = —pllYill L) + WiellLr @) = —pllvillLi@) + £1vill @
> (7 = PYillr @ lonll L @)

This implies w1 > ch™ .
(5) Apply Theorem 3.1 to conclude. O

Remark 4.15. The above result can be easily adapted to the situation where p is a nonconstant function in
L>(Q).

5. NUMERICAL ILLUSTRATIONS

The purpose of this section is to numerically illustrate the theoretical results derived in the previous sections.
Results are collected in Table 1 for the following test cases:

e Case 1 (LapMix): the Laplacian in mixed form is approximated by the non-standard Galerkin technique
described in Section 4.2; the domain is = 0, 1[ and a family of uniform meshes with stepsize h = 27,
i€{2,...,6}, is employed. The Euclidean condition number k5 (A) behaves like h~! in agreement with
Theorem 4.6. Furthermore, we observe that the condition numbers x1(A) and koo (A) behave like A1
also and that both numbers approximately take the same value; this value is slightly larger than that
of Kko(A).

e Case 2 (GaLS): the first-order PDE (50) posed in the unit square of R? with p = 1 and 3 = (1,0)7 is
approximated by the GaLS technique with parameter cgars set to 1; the meshes are quasi-Delaunay
triangulations constructed using a frontal method by imposing a uniform meshsize h = 0.1, 0.05, 0.025,
and 0.0125 at the boundary of . The Euclidean condition number r2(A) behaves like A~! in agreement
with Theorem 4.10. Furthermore, the condition number ko, (A) appears to behave like h=! also, while
the condition number r1(A) explodes more slowly than A~!. It is also observed that the Euclidean
condition number takes larger values than those of the two other condition numbers, as opposed to the
results obtained for the Laplacian in mixed form.

e Case 3 (NGL1): the first-order PDE (69) with p = 1 is approximated by the non-standard Galerkin
technique based on the L'-setting described in Section 4.4; a family of uniform meshes with stepsize
h =27% i € {2,...,6}, is employed. The condition number x1(.A) behaves like h~! in agreement
with Theorem 4.14. The Euclidean condition number r2(A) appears to behave like h~! also and
k2(A) < k1(A). Finally, owing to the particular structure of the stiffness matrix, the condition number
Koo(A) is equal to x1(A).
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TABLE 1. Condition numbers of the stiffness matrix as a function of meshsize for the three test cases.

ht LapMix ht GaLS ht NGL1

k1(A)  Ra(A)  roo(A) k1(A) Ka(A) kool A) ki(A)  ka(A)
4 14.6 8.5 13.5 10 20.9 68.5 41.5 4 50.7 36.6
8 26.6 16.7 25.5 20 36.1  139.0 81.9 8| 101.2 72.7
16 50.6 32.9 49.5 40 60.6 282.8 157.9 16 | 202.3 143.9
32 99.5 64.9 97.5 80 | 123.5 430.3 320.7 32| 404.6 285.7
64 | 194.5 129.0 193.5 — 64 | 809.1 568.8

To sum up, we observe that in the three test cases, the numerical predictions match the theoretical results
whenever available.

A. TECHNICAL RESULTS

A.l. Estimates of k), and k5,

Let {7} }r>0 be a shape-regular family of meshes of 2. Recall that the family {7, }n~0 is said to be quasi-
uniform if there is ¢, independent of h = maxxer, (hi), such that h < eminger, (hx). This section collects
the main estimates of ks, 5 and k¢ p, under the assumption that the family {75 }r>0 is quasi-uniform. The
proof is well-known for p = 2 and can be easily adapted to handle the case p € [1,4+00]. For completeness, the
proof is brleﬂy presented in the general case.

Let {K P Z} be the reference finite element on which W is constructed. For each cell K, denote by
Tk : K — K the transformation that maps the reference cell K to K. For the sake of simplicity, assume that
Ty is affine, i.e., £ is a polyhedron. Moreover, assume the following:

Wi € {wp, € [LYQ)]"; VK € T, (wp 0 Ti') |k € P} (79)

See [4,5,8,10] for more details on the construction of finite element spaces.

Lemma A.1. If {7, }r>0 s quasi-uniform, there exist 0 < ¢y < co such that

d 4
Vh, Ywp € Wh,  c1rh? ||Cw, wn|lp < [lwnllLeo) < c2h?||Cw, wal|p. (80)
As a result,
C1
Vh, — <kg <2 81
" e Ks,p,h = C1 ( )

Proof. Assume 1 < p < +00. The case p = +oo can be treated similarly.
(1) Let {61,...,0,,} be the local shape functions for the reference finite element. Denote by S™* the unit
sphere in R"® for the || - ||,-norm and define the operator

Msh
P : 8™ 5y — H kaH _ €eR.
Gl PRLL P

The operator 1) is clearly continuous. Moreover, since S™* is compact, ¥ reaches its minimum and its maximum,
say ¢1 and Co, respectively. Assume that ¢; = 0. Then, there exists n € S™+ such that ¥(n) = 0, yielding
Sort mebk = 0. Since {61,...,0,,} is a basis, this implies 71 = ... = 7, = 0, contradicting the fzict that
n € S8"™n. Therefore, ¢; > 0. Consider now Y € R™* with ¢ # 0. Let u = Y = U;6; and n; () = Ui/ IUp
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for 1 < i < ng. Clearly, (@) = (0 (@)1icny, I8 in S0, Since $(n(@) = |l )/ IGlly» the following
inequalities hold:

vu e R, e [Ully < lull oy < e [l4]]p- (82)

(2) Consider now an arbitrary element K in the mesh. Denote by Tk : K — K the corresponding transformation
and by {61,...,0,,} the local shape functions. For U € R™", set u = > " U;0; and & = u o Tx. Observing
that U = U and changing variables in the integral in (82) yields

Ng meas( K % ~ meas( K % ~
U e R, (200N G U, < ullzo < (22527 & U],

meas(K)
meas(K)
As a result, there are 0 < ¢; < ¢ such that

meas(K)

d d . . . . . . / d
< ch% < ch®. Furthermore, the quasi-uniformity of the mesh family implies ¢'hA% < meas(R)"

Clearly,

Vh, VK € T, VU € R™, cihd U], < |[ull o) < cah? U]
(3) Let wy, € Wy, and set W = Cw, wp,, i.€., wp = 21111 W;1;. Step 2 shows that

Vh, VK € Tpy  cth® Y IWilP < [lwp|, ) < c2h D~ PP,
€Y K i€V K

where Y is the set of indices 7 such that the intersection of K with the support of the global shape function
1; has non-zero measure. Summing over the elements yields

L D S 11V N e S W 1101

KeT, €Tk KeTy ieTk

Since {7}, }r>0 is shape-regular, it is clear that the cardinal of Y g is bounded uniformly in h; hence, (80) holds.
(4) Estimate (81) is a direct consequence of (80). O

Remark A.2. The above proof can be easily adapted if the finite elements are not locally defined by the change
of variable (wy, o T§1)| x € P but by some other scaling like for Raviart-Thomas-like elements or Nédélec-like
elements.

d

Remark A.3. If {7}, }>0 is not quasi-uniform, the lower bound in (80) holds with A2, and the upper bound
d

holds with hfax, where hAmax and hni, are the largest and smallest cell diameters in the mesh, respectively;

see, e.g., [1].

Remark A.4. When p = 2, it is possible to interpret mg p n, Ms p.h, Mt pn, and My, in terms of eigenvalues.
Define the mass matrix M, = (fQ Yih;)1<ij<n. Observe that M, is symmetric positive definite. Let As and
As be the smallest and largest eigenvalue of M, respectively. Likewise define the mass matrix associated with
the global shape functions in Vj, i.e., My = (fQ Yipj)i<ij<n. The smallest and largest eigenvalue of M, are
denoted by A; and Ay, respectively. Definitions (13) and (14) imply

1 1
Ms,2,n = )\527 Ms,Q,h = ASza (83)
Me2h = A2, Mo =A2. (84)
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A.2. Existence of large-scale discrete functions

Let Z C L be two Banach spaces with continuous embedding. Denote by i the norm of the embedding
operator, i.e.,

RN E P

= p .

cp ez |2z

Let {Zn}n>0 be a family of finite-dimensional vector spaces equipped with the norm || - ||z, . Assume Z, C L for

all h > 0. Introduce Z(h) = Z + Zj, and equip this space with a norm || - || z() such that || - |z, = || - ||z, on

Zp, and Z is uniformly continuously embedded in Z(h). Denote by c¢inj the uniform embedding constant, i.e.,

2]l z(n) < cinjl|2]|z for all z € Z. Assume moreover that the family {Z}n>0 has the following approximability

property:

(85)

Vze Z, lim ing lz = zullz + |z — 2zull zn) = 0. (86)

1
h—0 zp€Z)

Lemma A.5. Under the above assumptions, there is ho such that for all h < hg, there is Zn € Zp\{0} such
that

20z, < 2cpeinjllZnllL- (87)
Proof. The definition of cp implies that there exists Z € Z\{0} such that ||Z]|z < 3cp||Z|.. Let € > 0. The
approximability property implies that there is h. such that for all h < h., there is Zj, € Z}, satisfying

12— ZullL < ellZ]z, 12— Zullz(n) < ecpemill 2| L
Then,
120l 2, <112 = Znllzn) + 112l 2n) < ecpemgllZllL + cinjllZllz < cpeii(e + 3)12]|L.
Moreover,
IZelle > 112l = 12 = ZrllL = (1 = e)[1Z]| L

Then,

20l z,, Ste

e ~ ™1

Conclude using € = + O

6.
Remark A.6. If Z = Hj(Q2), L = L*(2), and ||z||3, = [, Vz-Vz, then cp is the square root of the first eigen-

value of the Laplace operator supplemented with homogeneous Dirichlet boundary conditions. This motivates
the fact that the function Z; provided by Lemma A.5 is termed a large-scale discrete function.
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