
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 40, No 1, 2006, pp. 29–48 www.edpsciences.org/m2an
DOI: 10.1051/m2an:2006006

EVALUATION OF THE CONDITION NUMBER IN LINEAR SYSTEMS
ARISING IN FINITE ELEMENT APPROXIMATIONS

Alexandre Ern1 and Jean-Luc Guermond2

Abstract. This paper derives upper and lower bounds for the �p-condition number of the stiffness
matrix resulting from the finite element approximation of a linear, abstract model problem. Sharp
estimates in terms of the meshsize h are obtained. The theoretical results are applied to finite element
approximations of elliptic PDE’s in variational and in mixed form, and to first-order PDE’s approxi-
mated using the Galerkin–Least Squares technique or by means of a non-standard Galerkin technique
in L1(Ω). Numerical simulations are presented to illustrate the theoretical results.
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1. Introduction

The finite element method provides an extremely powerful tool to approximate partial differential equations
arising in engineering sciences. Since the linear systems obtained with this technique are generally very large and
sparse, the most practical way to solve them is to resort to iterative methods. Estimates for the convergence
rate of iterative methods usually depend on the condition number of the system matrix (see, e.g., [11, 14]).
Although in general it is the distribution of eigenvalues rather than the condition number that controls the
convergence rate of iterative methods, a study of the condition number per se is still of interest. In particular,
it is important to assess this quantity as a function of the meshsize used in the finite element method.

It is well-known that second-order elliptic equations, e.g., a Laplacian, yield stiffness matrices whose Euclidean
condition number explodes as the reciprocal of the square of the meshsize; see, e.g., [3]. More generally, let
p ∈ [1,+∞] and denote by ‖ · ‖p the �p-norm in R

N , i.e., for all W ∈ R
N , set

‖W‖p =

(
N∑

i=1

|Wi|p
) 1

p

, (1)
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if 1 ≤ p < +∞ and ‖W‖∞ = max1≤i≤N |Wi|. Use a similar notation for the associated matrix norm over R
N,N .

Define the �p-condition number of an invertible matrix A ∈ R
N,N by

κp(A) = ‖A‖p‖A−1‖p. (2)

Recent work on the conditioning of finite element matrices has focused on upper bounds for the Euclidean
condition number in the case of locally refined meshes; see, e.g., [1, 3]. The objective of the present paper is to
give upper and lower bounds on κp(A) for p ∈ [1,+∞] when A is the stiffness matrix associated with the finite
element approximation of a linear, abstract model problem posed in Banach spaces. The analysis is restricted
to finite element bases that are localized in space, i.e., nodal bases. The case of hierarchical and modal bases
is not discussed. Technical aspects related to locally refined meshes are not addressed either.

This paper is organized as follows. Section 2 collects preliminary results. Necessary and sufficient conditions
for wellposedness of an abstract model problem are stated, and the finite element setting for the approximation
of this problem is introduced. Section 3 contains the main results of the paper. Section 4 presents various
applications to finite element approximations of PDE’s. Elliptic PDE’s either in variational or in mixed form
are first considered. Then, first-order PDE’s approximated using either the Galerkin–Least Squares (GaLS)
technique or a non-standard Galerkin technique in L1(Ω) are analyzed. For most of the examples (with the
exception of the last one where the case p = 1 is considered), the analysis in Section 4 focuses on the case p = 2.
Numerical illustrations are reported in Section 5. Finally, Appendix A collects technical results concerning
norm equivalence constants and the existence of large-scale discrete functions in finite element spaces.

2. Preliminaries

2.1. Wellposedness

Let W and V be two real Banach spaces equipped with some norms, say ‖ · ‖W and ‖ · ‖V , respectively.
Consider a linear bounded operator

A : W −→ V. (3)
Recall that as a consequence of the Open Mapping Theorem and the Closed Range Theorem [15], the following
holds:

Lemma 2.1. The following statements are equivalent:
(i) A is bijective.
(ii) There exists a constant α > 0 such that

∀w ∈ W, ‖Aw‖V ≥ α‖w‖W , (4)

∀v′ ∈ V ′, (AT v′ = 0) =⇒ (v′ = 0). (5)

Another way of interpreting A consists of introducing the bilinear form a ∈ L(W × V ′; R) such that

∀(w, v′) ∈ W × V ′, a(w, v′) = 〈v′, Aw〉V ′,V , (6)

where 〈·, ·〉V ′,V denotes the duality paring. Owing to a standard corollary of the Hahn–Banach Theorem, for
all f ∈ V and for all w ∈W , Aw = f if and only if a(w, v′) = 〈v′, f〉V ′,V for all v′ ∈ V ′. Then, a reformulation
of Lemma 2.1, henceforth referred to as the BNB Theorem [2,8, 13], is the following:

Theorem 2.2 (Banach–Nečas–Babuška). The following statements are equivalent:
(i) For all f ∈ V , the problem {

Seek u ∈W such that
a(u, v′) = 〈v′, f〉V ′,V , ∀v′ ∈ V ′,

(7)

is well-posed.
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(ii) There exists a constant α > 0 such that

inf
w∈W

sup
v′∈V ′

a(w, v′)
‖w‖W ‖v′‖V ′

≥ α, (8)

∀v′ ∈ V ′, (∀w ∈W, a(w, v′) = 0) =⇒ (v′ = 0). (9)

If V is reflexive, the above setting is unchanged if V is substituted by V ′ and V ′ by V . As an illustration of a
nonreflexive situation, the reader may think of W = W 1,1(Ω), V = L1(Ω), V ′ = L∞(Ω), and A : W � u �−→
u+ ux ∈ V .

Remark 2.3. When supremun and/or infimum over sets of functions are considered, it is always implicitly
understood that the zero function is excluded from the set in question whenever it makes sense. This convention
is meant to alleviate the notation.

2.2. The finite element setting

Let Ω be an open domain in R
d. Let n be a positive integer. In the sequel, we assume that W and V are

Banach spaces of R
n-valued functions on Ω. For p ∈ [1,+∞], equip [Lp(Ω)]n with the norm ‖w‖Lp(Ω) =

(
∫
Ω

∑n
i=1 |wi|p)

1
p if p 
= ∞ and for p = ∞, set ‖w‖L∞(Ω) = max1≤i≤n ess supΩ |wi|. Let (w, v)L2(Ω) =∫

Ω

∑n
i=1 wivi denote the [L2(Ω)]n-inner product. Likewise, for a measurable subset K ⊂ Ω, set (w, v)L2(K) =∫

K

∑n
i=1 wivi.

To construct an approximate solution to (7), we introduce a family of meshes of Ω that we denote by {Th}h>0.
The parameter h refers to the maximum meshsize, i.e., h = maxK∈Th

hK where hK = diam(K). Let Wh and Vh

be finite-dimensional approximation spaces based on the mesh Th. These spaces are meant to approximate W
and V ′ respectively; henceforth, Wh is referred to as the solution space and Vh as the test space. Let p ∈ [1,+∞]
and denote by p′ its conjugate, i.e., 1

p + 1
p′ = 1 with the convention that p′ = 1 if p = +∞ and p′ = +∞ if

p = 1. We assume hereafter that dim(Wh) = dim(Vh) and that there is p ∈ [1,+∞] such that Wh ⊂ [Lp(Ω)]n

and Vh ⊂ [Lp′
(Ω)]n. The spaces Wh and Vh are equipped with some norms, say ‖ · ‖Wh

and ‖ · ‖Vh
, respectively.

Let A : W → V be an isomorphism. Problem (7) is approximated by replacing the spaces W and V ′ by their
finite-dimensional counterparts, yielding the approximate problem:{

Seek uh ∈ Wh such that
ah(uh, vh) = 〈vh, f〉h, ∀vh ∈ Vh.

(10)

Problem (10) involves a consistent approximation ah of the bilinear form a and a consistent approximation of
the linear form in the right-hand side. The way 〈vh, f〉h is defined is not important for the present investigation.
Henceforth, we assume

inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

> 0. (11)

This, together with the fact that dim(Wh) = dim(Vh), implies that the discrete problem (10) has a unique
solution.

Let N = dim(Wh) = dim(Vh). Assume we are given a basis for Vh, say {ϕ1, . . . , ϕN}. The elements in this
basis are hereafter referred to as the global shape functions of Vh. Likewise let {ψ1, . . . , ψN} be the global shape
functions in Wh. For a function vh ∈ Vh, denote by V ∈ R

N the coordinate vector of vh relative to the basis
{ϕ1, . . . , ϕN}, i.e., vh =

∑N
i=1 Viϕi ∈ Vh. Denote by CVh

: Vh −→ R
N the linear operator that maps vectors in

Vh to their coordinate vectors in R
N , i.e., CVh

vh = V . Similarly, denote by CWh
: Wh −→ R

N the operator that
maps vectors in Wh to their coordinate vectors in R

N . It is clear that both CVh
and CWh

are isomorphisms.
Denote by (·, ·)N the Euclidean scalar product in R

N .
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Define the so-called stiffness matrix A with entries
(
ah(ψj , ϕi)

)
1≤i,j≤N

. This definition is such that for all
(wh, vh) ∈ Wh × Vh, (CVh

vh,ACWh
wh)N = ah(wh, vh). The discrete problem (10) yields the linear system:{

Seek U ∈ R
N such that

AU = F , (12)

where the entries of F are Fi = 〈ϕi, f〉h for 1 ≤ i ≤ N . The solution uh to (10) is then uh = C−1
Wh

U .

2.3. Norm equivalence constants

Since Wh and Vh are finite-dimensional and since CWh
and CVh

are isomorphisms, it is legitimate to introduce
the following positive constants

ms,p,h = inf
wh∈Wh

‖wh‖Lp(Ω)

‖CWh
wh‖p

, Ms,p,h = sup
wh∈Wh

‖wh‖Lp(Ω)

‖CWh
wh‖p

, (13)

mt,p,h = inf
vh∈Vh

‖vh‖Lp′(Ω)

‖CVh
vh‖p′

, Mt,p,h = sup
vh∈Vh

‖vh‖Lp′(Ω)

‖CVh
vh‖p′

· (14)

Here, the subscripts s and t refer to the solution space and the test space, respectively. The constants introduced
in (13)–(14) are such that

∀wh ∈Wh, ms,p,h‖W‖p ≤ ‖wh‖Lp(Ω) ≤Ms,p,h‖W‖p, (15)

∀vh ∈ Vh, mt,p,h‖V‖p′ ≤ ‖vh‖Lp′(Ω) ≤Mt,p,h‖V‖p′, (16)

with W = CWh
wh and V = CVh

vh. Henceforth, we denote

κs,p,h =
Ms,p,h

ms,p,h
, κt,p,h =

Mt,p,h

mt,p,h
, κp,h =

√
κs,p,hκt,p,h. (17)

It is possible to estimate ms,p,h and Ms,p,h (resp. mt,p,h and Mt,p,h) when Wh (resp. Vh) is a finite element
space and the global shape functions are such that their support is restricted to a number of mesh cells that
is uniformly bounded with respect to the meshsize. For instance, if the mesh family {Th}h>0 is quasi-uniform,
κs,p,h and κt,p,h are uniformly bounded with respect to h; see Appendix A.

3. Bounds on κp(A)

The goal of this section is to derive upper and lower bounds for the �p-condition number of the stiffness
matrix A.

3.1. Main results

Introduce the following notation:

αp,h = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

, (18)

ωp,h = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

· (19)
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A first result is the following:

Theorem 3.1. Under the above assumptions,

∀h, κ−2
p,h

ωp,h

αp,h
≤ κp(A) ≤ κ2

p,h

ωp,h

αp,h
· (20)

Proof. (1) Upper bound on ‖A‖p. Consider W ∈ R
N . Then, owing to definition (19) and using the notation

CVh
vh = V and CWh

wh = W ,

‖AW‖p = sup
V∈RN

(AW ,V)N

‖V‖p′
= sup

V∈RN

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

‖wh‖Lp(Ω)

‖W‖p

‖vh‖Lp′(Ω)

‖V‖p′
‖W‖p

≤ ωp,h

‖wh‖Lp(Ω)

‖W‖p
sup

V ∈RN

‖vh‖Lp′(Ω)

‖V‖p′
‖W‖p.

Using inequalities (15)–(16) yields ‖AW‖p ≤ ωp,hMs,p,hMt,p,h ‖W‖p. That is to say,

‖A‖p ≤ ωp,hMs,p,hMt,p,h.

(2) Upper bound on ‖A−1‖p. Using again (15)–(16) together with definition (18) yields

αp,hms,p,h ‖W‖p ≤ αp,h‖wh‖Lp(Ω) ≤ sup
vh∈Vh

ah(wh, vh)
‖vh‖Lp′(Ω)

= sup
V∈RN

(AW ,V)N

‖vh‖Lp′(Ω)

≤ ‖AW‖p sup
V∈RN

‖V‖p′

‖vh‖Lp′(Ω)

≤ m−1
t,p,h ‖AW‖p.

Hence, setting Z = AW , we infer αp,hms,p,h ‖A−1Z‖p ≤ m−1
t,p,h ‖Z‖p. Since Z is arbitrary, this means

‖A−1‖p ≤ 1
αp,h

m−1
s,p,hm

−1
t,p,h.

The upper bound in (20) is a direct consequence of the above estimates.
(3) Lower bound on ‖A−1‖p. Since Wh is finite-dimensional, there is wh 
= 0 in Wh such that

αp,h = sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

·

As a result, setting W = CWh
wh and V = CVh

vh yields

‖AW‖p = sup
V∈RN

(AW ,V)N

‖V‖p′
= sup

vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

‖vh‖Lp′(Ω)

‖V‖p′

‖wh‖Lp(Ω)

‖W‖p
‖W‖p

≤ αp,hMt,p,hMs,p,h ‖W‖p.

Hence,
1
αp,h

M−1
t,p,hM

−1
s,p,h ≤ ‖A−1‖p.

(4) Lower bound on ‖A‖p. Since Wh is finite-dimensional, there is wh 
= 0 in Wh such that

ωp,h = sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

·



34 A. ERN AND J.-L. GUERMOND

This implies

ms,p,h‖W‖p ≤ ‖wh‖Lp(Ω) =
1
ωp,h

sup
vh∈Vh

ah(wh, vh)
‖vh‖Lp′(Ω)

=
1
ωp,h

sup
vh∈Vh

(AW ,V)N

‖V‖p′

‖V‖p′

‖vh‖Lp′(Ω)

≤ 1
ωp,h

m−1
t,p,h‖AW‖p ≤ 1

ωp,h
m−1

t,p,h‖A‖p‖W‖p.

Since W 
= 0 this yields
ωp,hms,p,hmt,p,h ≤ ‖A‖p.

The lower bound in (20) easily follows from the above estimates. �

To account for a possible polynomial dependence of αp,h and ωp,h on h, we make the following additional
technical hypotheses:

∃γ,

⎧⎨⎩
0 < cαinf = lim inf

h→0
αp,h h

−γ < +∞,

0 < cαsup = lim sup
h→0

αp,h h
−γ < +∞,

(21)

∃δ,

⎧⎨⎩
0 < cωinf = lim inf

h→0
ωp,h h

δ < +∞,

0 < cωsup = lim sup
h→0

ωp,h h
δ < +∞.

(22)

As a consequence of Theorem 3.1, we deduce the following:

Theorem 3.2. Under the assumptions (21)–(22), the following holds true: for all ε ∈ ]0, 1[, there is hε such
that for all h ≤ hε,

(1 − ε)
cωinf

cαsup

κ−2
p,h h

−γ−δ ≤ κp(A) ≤ (1 + ε)
cωsup

cαinf

κ2
p,h h

−γ−δ. (23)

Proof. Let ε ∈ ]0, 1[.
(1) There is hε such that for all h ≤ hε, (1 − ε

3 )cαinfh
γ ≤ αp,h and ωp,h ≤

(
1 + ε

3

)
cωsuph

−δ. Then, apply
Theorem 3.1 to deduce the upper bound.
(2) Owing to the definition of cαsup, there is hε such that for all 0 < h ≤ hε, there is wh ∈ Wh satisfying

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

≤
(
1 +

ε

2

)
cαsup h

γ .

Then, proceed as in step (3) of the proof of Theorem 3.1 to derive the lower bound

‖A−1‖p ≥ (1 +
ε

2
)−1 (cαsup)−1M−1

s,p,hM
−1
t,p,h h

−γ .

(3) The definition of cωinf implies the existence of hε such that for all 0 < h ≤ hε, there is wh ∈ Wh satisfying

(1 − ε

2
) cωinf h

−δ ≤ sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

·

Then, proceed as in step (4) of the proof of Theorem 3.1 to infer ‖A‖p ≥ (1 − ε
2 ) cωinf ms,p,hmt,p,h h

−δ. The
lower bound on κp(A) then results from the above estimates. �
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Remark 3.3. Observe that in (20) and (23) the lower bound is multiplied by κ−2
p,h and the upper bound is

multiplied by κ2
p,h; hence, these estimates are sharp only if κp,h = √

κs,p,hκt,p,h is uniformly bounded with
respect to h. It is shown in the appendix that this holds true when the global shape functions {ϕ1, . . . ϕN} and
{ψ1, . . . ψN} spanning Vh and Wh respectively have localized supports. The definition of αp,h and ωp,h must be
modified if the bases of Vh and Wh are hierarchical.

3.2. Estimates based on natural stability norms

Introduce the quantities

αh = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

, (24)

ωh = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

· (25)

In general, one may expect that the norms of Wh and Vh are selected so that αh is uniformly bounded from
below away from zero and ωh is uniformly bounded. Hence, bounding κp(A) in terms of αh and ωh may yield
valuable information.

For this purpose, we make the following technical assumptions:

∃csP > 0, ∀wh ∈Wh, csP ‖wh‖Lp(Ω) ≤ ‖wh‖Wh
, (26)

∃ctP > 0, ∀vh ∈ Vh, ctP ‖vh‖Lp′(Ω) ≤ ‖vh‖Vh
, (27)

∃s > 0, ∃csI , ∀wh ∈Wh, ‖wh‖Wh
≤ csIh

−s‖wh‖Lp(Ω), (28)

∃t > 0, ∃ctI , ∀vh ∈ Vh, ‖vh‖Vh
≤ ctIh

−t‖vh‖Lp′(Ω). (29)

Estimates (26) and (27) are Poincaré-like inequalities expressing the fact that the norms equipping Wh and
Vh control the Lp-norm and the Lp′

-norm, respectively. In other words, the injections Wh ⊂ [Lp(Ω)]n and
Vh ⊂ [Lp′

(Ω)]n are uniformly continuous. Furthermore, (28) and (29) are inverse inequalities. When the mesh
family {Th}h>0 is quasi-uniform, the constants s and t can be interpreted as the order of the differential operator
used to define the norms in Wh and Vh, respectively.

As a consequence of Theorem 3.1, we deduce the following:

Corollary 3.4. Under the assumptions (26)–(29), the following bound holds:

∀h, κp(A) ≤ κs,p,h
csI

csP
κt,p,h

ctI
ctP

ωh

αh
h−s−t. (30)

Proof. Let us estimate αp,h and ωp,h.
(1) It is clear that

αh = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

≤ 1
csP ctP

inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

·

Hence αp,h ≥ csP ctP αh.
(2) Moreover,

ωp,h = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′(Ω)

≤ ωh sup
wh∈Wh

‖wh‖Wh

‖wh‖Lp(Ω)
sup

vh∈Vh

‖vh‖Vh

‖vh‖Lp′(Ω)

≤ ωh csI ctI h
−s−t.

Hence, ωp,h ≤ csI ctI ωh h
−s−t.

(3) Conclude using Theorem 3.1. �
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Remark 3.5. It may happen that (30) is not sharp; see Section 4.3 and (68).

In addition to (26)–(29), we assume the following:

∃µ,

⎧⎪⎪⎨⎪⎪⎩
0 < dα

inf = lim inf
h→0

αp,h

αh
hµ < +∞,

0 < dα
sup = lim sup

h→0

αp,h

αh
hµ < +∞,

(31)

∃ν,

⎧⎪⎪⎨⎪⎪⎩
0 < dω

inf = lim inf
h→0

ωp,h

ωh
hs+t−ν < +∞,

0 < dω
sup = lim sup

h→0

ωp,h

ωh
hs+t−ν < +∞.

(32)

The constants µ and ν are meant to measure the possible default to optimality of Corollary 3.4. Proceeding as
in the proof of Theorem 3.2, it is clear that the following holds true:

Corollary 3.6. Under the assumptions (26)–(29) and (31)–(32), the following holds true: for all ε ∈ ]0, 1[,
there is hε such that for all h ≤ hε,

(1 − ε)
dω
inf

dα
sup

κ−2
p,h

ωh

αh
h−s−t+µ+ν ≤ κp(A) ≤ (1 + ε)

dω
sup

dα
inf

κ2
p,h

ωh

αh
h−s−t+µ+ν . (33)

4. Applications

This section presents various applications of the theoretical results derived in Section 3 to finite element
approximations of PDE’s posed on a bounded domain Ω in R

d. For the sake of simplicity, we assume that Ω is
a polyhedron. Let {Th}h>0 be a shape-regular family of meshes of Ω.

4.1. Elliptic PDE’s in variational form

Consider the Laplacian with homogeneous Dirichlet boundary conditions. Set W = H1
0 (Ω), V = H−1(Ω),

and A : W � w �−→ −∆w ∈ V . Clearly A : W → V is an isomorphism. Introduce the bilinear form
a(w1, w2) =

∫
Ω ∇w1·∇w2, ∀(w1, w2) ∈ W ×W .

LetWh be a finite-dimensional space based on the mesh Th. We assume thatWh ⊂W , i.e., the approximation
is H1-conforming. We assume that Wh is such that there is c, independent of h, such that the following global
inverse inequality holds:

∀wh ∈ Wh, ‖∇wh‖L2(Ω) ≤ c h−1 ‖wh‖L2(Ω). (34)

This hypothesis holds whenever Wh is a finite element space constructed using a quasi-uniform mesh family;
see, e.g., [4, 5, 8, 10].

Consider the approximate problem:{Seek uh ∈Wh such that
a(uh, vh) = (f, vh)L2(Ω), ∀vh ∈Wh,

(35)

for some data f ∈ L2(Ω). Let A be the stiffness matrix associated with (35). The main result concerning the
Euclidean condition number of A is the following:

Theorem 4.1. If the mesh family {Th}h>0 is quasi-uniform and (34) holds, there are 0 < c1 ≤ c2, both
independent of h, such that

c1κ
−2
2,h h

−2 ≤ κ2(A) ≤ c2κ
2
2,h h

−2. (36)
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Proof. (1) For wh ∈ Wh \ {0}, define R(wh) =
‖∇wh‖2

L2(Ω)

‖wh‖2
L2(Ω)

. Then

α2,h = inf
wh∈Wh

R(wh), ω2,h = sup
wh∈Wh

R(wh). (37)

(2) Let z̃h be given by Lemma A.5 with Z = H1
0 (Ω), Zh = Wh equipped with the H1-seminorm, and L = L2(Ω).

Since R(z̃h) ≤ c, we infer α2,h ≤ R(z̃h) ≤ c uniformly in h. Moreover, the Poincaré inequality in H1
0 (Ω) implies

that α2,h is uniformly bounded from below away from zero.
(3) Letting wh in (37) be one of the global shape functions in Wh, it is clear that ω2,h ≥ ch−2. Moreover, owing
to the inverse inequality (34), ω2,h ≤ c′h−2.
(4) To conclude, use Theorem 3.1 (or Thm. 3.2 with γ = 0 and δ = 2). �
Remark 4.2. Observe that owing to the quasi-uniformity of {Th}h>0 and Lemma A.1, the constant κ2,h =√
κs,2,hκt,2,h is bounded from below and from above uniformly with respect to h when the global shape functions

have localized supports.

Remark 4.3. The Euclidean condition number κ2(A) can also be estimated using Corollary 3.4. One readily
verifies that αh can be bounded from below uniformly with respect to h, ωh can be bounded from above
uniformly with respect to h, and that s = t = 1. Hence, (30) yields κ2(A) ≤ ch−2, i.e., the estimate is sharp.
One also verifies that µ = ν = 0 in (31)–(32), confirming the optimality of Corollary 3.4.

Remark 4.4. Estimate (36) extends to more general second-order elliptic operators, e.g., advection-diffusion-
reaction equations.

4.2. Elliptic PDE’s in mixed form

In this section we investigate the following non-standard Galerkin technique introduced in [6] to approximate
the Laplacian in mixed form. Let H(div; Ω) = {v ∈ [L2(Ω)]d; ∇·v ∈ L2(Ω)}, W = H(div; Ω) × H1

0 (Ω), and
V = [L2(Ω)]d × L2(Ω). Introduce the operator

A : W � (u, p) �−→ (u + ∇p,∇·u) ∈ V. (38)

One readily verifies that A : W → V is an isomorphism. For (w, v) ∈ W × V , define the bilinear form

a((u, p), (v, q)) = (u, v)L2(Ω) + (∇p, v)L2(Ω) + (∇·u, q)L2(Ω). (39)

By analogy with Darcy’s equations, u is termed the velocity and p the pressure.
The non-standard Galerkin approximation consists of seeking the discrete velocity in the Raviart–Thomas

finite element space of lowest order and the discrete pressure in the Crouzeix–Raviart finite element space.
Denote by Fh, F∂

h , and F i
h the set of faces, boundary faces, and interior faces of the mesh, respectively. Define

Xh = {uh; ∀K ∈ Th, uh|K ∈ RT0; ∀F ∈ F i
h,
∫

F [[uh·n]] = 0}, (40)

Yh = {ph; ∀K ∈ Th, ph|K ∈ P1; ∀F ∈ Fh,
∫

F [[ph]] = 0}, (41)

where RT0 = [P0]d ⊕ xP0, [[uh·n]] denotes the jump of the normal component of uh across interfaces, and [[ph]]
the jump of ph across interfaces (with the convention that a zero outer value is taken whenever F ∈ F∂

h ). Test
functions for both the velocity and the pressure are taken to be piecewise constants. Introducing the spaces
Wh = Xh × Yh and

Vh = {(vh, qh); ∀K ∈ Th, vh|K ∈ [P0]d and qh|K ∈ P0}, (42)
and defining the bilinear form ah ∈ L(Wh × Vh; R) such that

ah((uh, ph), (vh, qh)) = (uh, vh)L2(Ω) + (∇·uh, qh)L2(Ω) +
∑

K∈Th

(∇ph, vh)L2(K), (43)
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the discrete problem is formulated as follows:{Seek (uh, ph) ∈ Wh such that
ah((uh, ph), (vh, qh)) = (f, qh)L2(Ω), ∀(vh, qh) ∈ Vh,

(44)

for some data f ∈ L2(Ω). Note that the approximation setting is conforming on the velocity and non-conforming
on the pressure. Moreover, it is readily checked that the total number of unknowns in (44) equals the total
number of equations. Indeed, the former is the number of faces plus the number of interior faces, the latter is
equal to (d+ 1) times the number of elements, and these two quantities are equal owing to the Euler relations.

Equip Wh with the norm

‖(uh, ph)‖2
Wh

= ‖uh‖2
L2(Ω) + ‖∇·uh‖2

L2(Ω) + ‖ph‖2
L2(Ω) +

∑
K∈Th

‖∇ph‖2
L2(K), (45)

and equip Vh with the norm ‖(vh, qh)‖2
Vh

= ‖vh‖2
L2(Ω) + ‖qh‖2

L2(Ω). In the framework of the BNB Theorem, the
main stability result for (44) is the following:

Lemma 4.5. There are c > 0 and h0 such that for all h ≤ h0,

inf
(uh,ph)∈Wh

sup
(vh,qh)∈Vh

ah((uh, ph), (vh, qh))
‖(uh, ph)‖Wh

‖(vh, qh)‖Vh

≥ c. (46)

Proof. Since this is a non-classical result, the proof is briefly sketched; see [6] and [8] for further details.
(1) Let (uh, ph) ∈ Wh. Denote by uh the function whose restriction to each element K ∈ Th is the mean value
of uh. Use a similar notation for ph. Denote by ∇hph the function whose restriction to each element K ∈ Th is
∇ph|K . Set vh = uh + ∇hph and qh = 2ph + ∇·uh. Note that the pair (vh, qh) is in Vh since the gradient and
the divergence terms are piecewise constant owing to the present choice of discrete spaces. Hence,

ah((uh, ph), (vh, qh)) = (uh, uh)L2(Ω) + ‖∇·uh‖2
L2(Ω) +

∑
K∈Th

‖∇ph‖2
L2(K)

+ 2(∇·uh, ph)L2(Ω) +
∑

K∈Th

(uh,∇ph)L2(K) + (∇ph, uh)L2(K)

= ‖uh‖2
L2(Ω) + ‖∇·uh‖2

L2(Ω) +
∑

K∈Th

‖∇ph‖2
L2(K),

since (∇·uh, ph)L2(Ω) +
∑

K∈Th
(uh,∇ph)L2(K) = 0.

(2) For uh ∈ Xh, one readily verifies that ∀K ∈ Th, ∀x ∈ K, uh(x) = uh + 1
d (x − gK)∇·uh where gK is the

barycenter of K. This implies that there is c, independent of h, such that

∀uh ∈ Xh, ‖uh‖L2(K) ≤ ‖uh‖L2(K) + c hK‖∇·uh‖L2(K).

Hence,
ah((uh, ph), (vh, qh)) ≥ c‖uh‖2

L2(Ω) + (1 − c′h2)‖∇·uh‖2
L2(Ω) +

∑
K∈Th

‖∇ph‖2
L2(K).

If h is small enough, (1 − c′h2) is bounded from below by 1
2 .

(3) Use the extended Poincaré inequality (see, e.g., [7, 8] for a proof)

∀ph ∈ Yh,
∑

K∈Th

‖∇ph‖2
L2(K) ≥ c ‖ph‖2

L2(Ω),



CONDITION NUMBER OF STIFFNESS MATRICES 39

and the above estimates to conclude that ah((uh, ph), (vh, qh)) ≥ c ‖(uh, ph)‖2
Wh

≥ c′‖(uh, ph)‖Wh
‖(vh, qh)‖Vh

.
�

We now estimate the Euclidean condition number of the stiffness matrix A resulting from (44). Our main
result is the following:

Theorem 4.6. If the mesh family {Th}h>0 is quasi-uniform, there are 0 < c1 ≤ c2, both independent of h, such
that

c1κ
−2
2,h h

−1 ≤ κ2(A) ≤ c2κ
2
2,h h

−1. (47)

Proof. (1) Owing to (46),

sup
(vh,qh)∈Vh

ah((uh, ph), (vh, qh))
‖(vh, qh)‖Vh

≥ c ‖(uh, ph)‖Wh
≥ c ‖(uh, ph)‖L2(Ω).

Hence, α2,h ≥ c.
(2) Take uh = 0 and ph = z̃h given by Lemma A.5 with Z = H1

0 (Ω), Zh = Yh ∩ H1
0 (Ω) equipped with the

H1-seminorm, and L = L2(Ω). Then,

α2,h ≤ sup
(vh,qh)∈Vh

ah((0, z̃h), (vh, qh))
‖(0, z̃h)‖L2(Ω)‖(vh, qh)‖L2(Ω)

≤ c′.

(3) Since the mesh family {Th}h>0 is quasi-uniform, it is clear that an inverse inequality of the form (34) holds
in Wh. This implies that ω2,h ≤ ch−1. Moreover, setting uh = 0 and letting ph be one the global shape functions
in Yh, say ψi, yields

ω2,h ≥ sup
(vh,qh)∈Vh

ah((0, ψi), (vh, qh))
‖(0, ψi)‖L2(Ω)‖(vh, qh)‖L2(Ω)

≥ c′h−1.

(4) To conclude, use Theorem 3.1 (or Thm. 3.2 with γ = 0 and δ = 1). �

Remark 4.7. As for elliptic PDE’s in variational form, κ2(A) can also be estimated using Corollary 3.4. One
readily verifies that αh and ωh can be uniformly bounded from below and above, and that s = 1 and t = 0.
Hence, (30) yields κ2(A) ≤ ch−1, i.e., the estimate is sharp. One also verifies that µ = ν = 0 in (31)–(32),
confirming the optimality of Corollary 3.4.

Remark 4.8. It is also possible to consider a standard Galerkin approximation to the Laplacian in mixed form.
In this case, the solution space and the test space are identical and given by Wh = Vh = Xh × Zh where Xh

is defined by (40) and Zh denotes the space of piecewise constant functions. The discrete problem is (44) with
the bilinear form

ah((uh, ph), (vh, qh)) = (uh, vh)L2(Ω) − (∇·vh, ph)L2(Ω) + (∇·uh, qh)L2(Ω). (48)

One readily verifies that the Euclidean condition number of the resulting stiffness matrix scales as h−1, i.e., the
same asymptotic behavior as for the non-standard Galerkin approximation is obtained. This result is essentially
due to the fact that the mixed form only involves first-order PDE’s.

Remark 4.9. Although the Euclidean condition number of the stiffness matrix associated with the mixed form
is one order smaller in h than that associated with the variational form, the matrix in the first case is larger
than that in the second case so that it is not a priori clear to decide which linear system is the easiest to solve
by an iterative method.
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4.3. First-order PDE’s and GaLS

Let β be a vector field in R
d, assume β ∈ [L∞(Ω)]d, ∇·β ∈ L∞(Ω), and define the inflow and outflow

boundaries
∂Ω− = {x ∈ ∂Ω; β(x)·n(x) < 0}, ∂Ω+ = {x ∈ ∂Ω; β(x)·n(x) > 0}, (49)

where n is the outward unit normal to Ω. Let ρ be a function in L∞(Ω) and consider the advection-reaction
equation {

ρu+ β·∇u = f,

u|∂Ω− = 0.
(50)

To give a mathematical meaning to (50), introduce the so-called graph space

G = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)}. (51)

Equipped with the graph norm ‖w‖G = ‖w‖L2(Ω) + ‖β·∇w‖L2(Ω), G is a Hilbert space. Assume that

C1(Ω) is dense in G, (52)

∂Ω− and ∂Ω+ are well-separated, i.e., dist(∂Ω−, ∂Ω+) > 0. (53)

Hypothesis (52) amounts to a regularity assumption on Ω; for instance, it holds whenever Ω is Lipschitz. Owing
to (52)–(53), it can be shown (see, e.g., [9]) that the trace operator τ : C1(Ω) � v �−→ v|∂Ω ∈ L2(∂Ω; |β·n|)
extends uniquely to a continuous operator in G. Consider the spaces

W = {w ∈ G; τ(w) = 0}, V = L2(Ω), (54)

and define the differential operator

A : W � w �−→ ρw + β·∇w ∈ V. (55)

It is clear that A is continuous. Moreover, assuming that there is ρ0 > 0 such that almost everywhere in Ω,

ρ(x) − 1
2∇·β(x) ≥ ρ0 > 0, (56)

it can be shown that A : W → V is an isomorphism; see, e.g., [9].
We want to illustrate Theorem 3.1 by analyzing the Euclidean condition number of the stiffness matrix

associated with the GaLS approximation of (50). To this end introduce a finite-dimensional approximation
space Wh based on the mesh Th. Assume that Wh ⊂ H1(Ω) ∩W , i.e., the approximation is H1-conforming,
and assume that (34) holds. Introduce the bilinear form a ∈ L(W ×V ; R) such that a(w, v) = (Aw, v)L2(Ω) and
set

ah(w, v) = a(w, v) +
∑

K∈Th

δ(hK)(Aw,Av)L2(K), (57)

where δ(hK) = cGaLShK and cGaLS is a (user-defined) mesh-independent constant. Assume f ∈ L2(Ω). The
GaLS approximate problem consists of the following [12]:{Seek uh ∈Wh such that

ah(uh, vh) = (f, vh)L2(Ω) +
∑

K∈Th
δ(hK)(f,Avh)L2(K), ∀vh ∈Wh.

(58)

Note that the solution space and the test space are identical here, i.e., Vh = Wh. Define the symmetric bilinear
form as ∈ L(W ×W ; R) such that

∀(w1, w2) ∈ W ×W, as(w1, w2) = 1
2

(
(Aw1, w2)L2(Ω) + (w1, Aw2)L2(Ω)

)
. (59)
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It is clear that as is positive definite since

∀w ∈ W, as(w,w) = a(w,w) ≥ ρ0‖w‖2
L2(Ω). (60)

The main result of this section is the following:

Theorem 4.10. Assume that there is a nonempty open subset of Ω, say Ω0, in which infΩ0 ‖β‖ > 0 and β is in
C0,1(Ω0). Assume that the mesh family {Th}h>0 is quasi-uniform and (34) holds. Then, there are 0 < c1 ≤ c2
and h0 such that for all h ≤ h0,

c1κ
−2
2,h h

−1 ≤ κ2(A) ≤ c2κ
2
2,h h

−1. (61)

Proof. (1) Owing to (60),

ρ0 ≤ inf
wh∈Wh

ah(wh, wh)
‖wh‖2

L2(Ω)

≤ inf
wh∈Wh

sup
vh∈Wh

ah(wh, vh)
‖wh‖L2(Ω)‖vh‖L2(Ω)

= α2,h,

i.e., ρ0 ≤ α2,h.
(2) To derive a bound on α2,h, use Lemma A.5. Set Z = W , Zh = Wh, L = L2(Ω), and equip Zh with the
norm ‖zh‖Zh

= ‖Azh‖L2(Ω). Lemma A.5 implies that there exists c̃ > 0 and h̃ such that for all h ≤ h̃, there is
z̃h ∈Wh\{0} satisfying ‖Az̃h‖L2(Ω) ≤ c̃‖z̃h‖L2(Ω). Then using this bound together with

α2,h ≤ sup
vh∈Wh

ah(z̃h, vh)
‖z̃h‖L2(Ω)‖vh‖L2(Ω)

,

a direct computation using (34) shows that α2,h is bounded uniformly with respect to h.
(3) Using again (34) it is clear that there is c, independent of h, such that ω2,h ≤ ch−1.
(4) A simple computation yields

ah(wh, wh) ≥
∫

Ω

(ρ0 − h‖ρ‖2
L∞(Ω))w

2
h +

∑
K∈Th

hK

2

∫
K

|β·∇wh|2.

Assume that h is small enough so that ρ0 − h‖ρ‖2
L∞(Ω) ≥ 0 and there is a mesh cell K0 ⊂ Ω0. Then for all

wh ∈ Wh,

ah(wh, wh) ≥ hK0

2

∫
K0

1
2
|β·∇wh|2 − |(β − β)·∇wh|2,

where β is the value of β at the barycenter of K0. Then it is always possible to find a global shape function ϕi

that is nonzero on K0 and such that

‖β·∇ϕi‖L2(K0) ≥ ch−1‖ϕi‖L2(K0) ≥ c′h−1‖ϕi‖L2(Ω),

where c′ is positive and independent of h. Hence, if h is small enough

ω2,h ≥ ah(ϕi, ϕi)
‖ϕi‖2

L2(Ω)

≥ c′h−1.

(5) To conclude, use Theorem 3.1 (or Thm. 3.2 with γ = 0 and δ = 1). �
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We now estimate the Euclidean condition number κ2(A) using the natural stability norms. For the GaLS
technique these norms are

∀w ∈W,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖w‖2

h,A = as(w,w) +
∑

K∈Th

δ(hK)‖Aw‖2
L2(K),

‖w‖2
h, 12

= ‖w‖2
h,A +

∑
K∈Th

h−1
K ‖w‖2

L2(K).
(62)

The introduction of the above norms is motivated by the following stability and boundedness results:

∀w ∈W, ah(w,w) ≥ ‖w‖2
h,A, (63)

∀w ∈ W, ∀wh ∈ Wh, ah(w,wh) ≤ c ‖w‖h, 12
‖wh‖h,A, (64)

from which the convergence analysis of the GaLS approximation directly follows; see [8] for more details.

Proposition 4.11. Equip Wh and Vh with the norm ‖ · ‖h,A to define αh and ωh in (24)–(25). Then if the
mesh family {Th}h>0 is quasi-uniform, there is c, independent of h, such that

αh ≥ 1, (65)

ωh ≤ c h−
1
2 , (66)

s = t =
1
2
· (67)

Proof. (1) Estimate (65) is a direct consequence of (63).
(2) Owing to the quasi-uniformity hypothesis and (60),

‖w‖2
h, 12

= ‖w‖2
h,A + ch−1‖w‖2

L2(Ω) ≤ ‖w‖2
h,A +

c

ρ0
h−1as(w,w) ≤ (1 +

c

ρ0
h−1)‖w‖2

h,A.

The bound (66) follows readily from (64).
(3) Statement (67) is an easy consequence of (34). �
Remark 4.12. If we apply Corollary 3.4, we obtain

κ2(A) ≤ cκ2,hh
− 3

2 . (68)

This result shows that Corollary 3.4 may not be optimal; in fact, one readily verifies that µ = 0 and ν = 1
2 in

Corollary 3.6.

4.4. First-order PDE’s in L1

Let Ω = ]0, 1[, f ∈ L1(Ω), and consider the following problem:{
ρu+ ux = f,

u(0) = 0,
(69)

where ρ is a nonnegative constant. This problem has a unique solution in the framework

W = {w ∈W 1,1(Ω); w(0) = 0}, V = L1(Ω). (70)

Define the operator
A : W � w �−→ ρw + wx ∈ V. (71)
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A ∈ L(W ;V ) is an isomorphism, implying that

∃α > 0, ∀w ∈W, ‖Aw‖L1(Ω) ≥ α‖w‖W 1,1(Ω). (72)

Define the finite element spaces

Wh = {wh ∈ C0(Ω); ∀K ∈ Th, wh|K ∈ P1; wh(0) = 0}, (73)

Vh = {vh ∈ L1(Ω); ∀K ∈ Th, vh|K ∈ P0}. (74)

The discrete solution space Wh consists of continuous piecewise affine functions while the test space Vh consists
of piecewise constant functions. Introduce the bilinear form

∀(w, v) ∈W × V ′, a(w, v) =
∫ 1

0

(ρw + wx)v. (75)

Clearly a ∈ L(W × V ′; R) where V ′ = L∞(Ω). The discrete problem is the following:{
Seek uh ∈Wh such that

a(uh, vh) =
∫ 1

0 fvh, ∀vh ∈ Vh.
(76)

Obviously Wh and Vh have the same dimension, say N , the number of mesh cells. In the framework of the BNB
Theorem, the main stability result for (76) is the following:

Lemma 4.13. There is γ > 0 and h0 such that for all h ≤ h0,

inf
wh∈Wh

sup
vh∈Vh

a(wh, vh)
‖wh‖W 1,1(Ω)‖vh‖L∞(Ω)

≥ γ. (77)

Proof. Let wh ∈ Wh\{0}. Denote by sg the sign function, i.e., sg(x) = x
|x| if x is not zero and sg(0) = 0. For

wh ∈ Wh, let wh ∈ Vh be the function such that the restriction of wh to a mesh cell K is the mean value of
wh over this mesh cell. Set zh = sg(ρwh + wh,x). Clearly ρwh + wh,x 
= 0, otherwise wh would be zero; hence,
‖zh‖L∞(Ω) = 1. Observing that zh ∈ Vh, we infer

sup
vh∈Vh

a(wh, vh)
‖vh‖L∞(Ω)

≥ a(wh, zh)
‖zh‖L∞(Ω)

=
∑

K∈Th

ρzh

∫
K

wh +
∫ 1

0

wh,xzh

=
∑

K∈Th

ρzh

∫
K

wh +
∫ 1

0

wh,xzh =
∫ 1

0

(ρwh + wh,x)zh

= ‖ρwh + wh,x‖L1 ≥ ‖ρwh + wh,x‖L1 − ‖ρ(wh − wh)‖L1

≥ α‖wh‖W 1,1(Ω) − ch‖wh‖W 1,1(Ω).

The conclusion follows readily. �

Let {ψ1, . . . , ψN} be the standard P1 nodal shape functions of Wh. Let {ϕ1, . . . , ϕN} be the standard P0

shape functions of Vh, i.e., the characteristic functions of mesh cells. Let A be the stiffness matrix with entries
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a(ψj , ϕi)

)
1≤i,j≤N

. The main result of this section is the following:

Theorem 4.14. If the mesh family {Th}h>0 is quasi-uniform, there are 0 < c1 ≤ c2 and h0 such that for all
h ≤ h0,

c1κ
−2
1,h h

−1 ≤ κ1(A) ≤ c2κ
2
1,h h

−1. (78)

Proof. (1) From Lemma 4.13, it is clear that α1,h ≥ γ.
(2) To derive a bound on α1,h, we use Lemma A.5. Set Z = W , Zh = Wh, L = L1(Ω), and equip Zh with the
norm ‖ ·‖W 1,1(Ω). Lemma A.5 implies that there exists c̃ > 0 and h̃ such that for all h ≤ h̃, there is z̃h ∈ Zh\{0}
satisfying ‖z̃h‖W 1,1(Ω) ≤ c̃‖z̃h‖L1(Ω). Since

α1,h ≤ sup
vh∈Vh

a(z̃h, vh)
‖z̃h‖L1(Ω)‖vh‖L1(Ω)

,

one readily infers that α1,h is bounded uniformly with respect to h.
(3) Using standard inverse inequalities yields ω1,h ≤ ch−1.
(4) Let ψi be a shape function in Wh and set vh = sg(ψi,x). Then, vh ∈ Vh, ‖vh‖L∞(Ω) = 1 and

a(ψi, vh) ≥ −ρ‖ψi‖L1(Ω) + ‖ψi,x‖L1(Ω) ≥ −ρ‖ψi‖L1(Ω) + c
h‖ψi‖L1(Ω)

≥ ( c
h − ρ)‖ψi‖L1(Ω)‖vh‖L∞(Ω).

This implies ω1h ≥ ch−1.
(5) Apply Theorem 3.1 to conclude. �
Remark 4.15. The above result can be easily adapted to the situation where ρ is a nonconstant function in
L∞(Ω).

5. Numerical illustrations

The purpose of this section is to numerically illustrate the theoretical results derived in the previous sections.
Results are collected in Table 1 for the following test cases:

• Case 1 (LapMix): the Laplacian in mixed form is approximated by the non-standard Galerkin technique
described in Section 4.2; the domain is Ω = ]0, 1[ and a family of uniform meshes with stepsize h = 2−i,
i ∈ {2, . . . , 6}, is employed. The Euclidean condition number κ2(A) behaves like h−1 in agreement with
Theorem 4.6. Furthermore, we observe that the condition numbers κ1(A) and κ∞(A) behave like h−1

also and that both numbers approximately take the same value; this value is slightly larger than that
of κ2(A).

• Case 2 (GaLS): the first-order PDE (50) posed in the unit square of R
2 with ρ = 1 and β = (1, 0)T is

approximated by the GaLS technique with parameter cGaLS set to 1; the meshes are quasi-Delaunay
triangulations constructed using a frontal method by imposing a uniform meshsize h = 0.1, 0.05, 0.025,
and 0.0125 at the boundary of Ω. The Euclidean condition number κ2(A) behaves like h−1 in agreement
with Theorem 4.10. Furthermore, the condition number κ∞(A) appears to behave like h−1 also, while
the condition number κ1(A) explodes more slowly than h−1. It is also observed that the Euclidean
condition number takes larger values than those of the two other condition numbers, as opposed to the
results obtained for the Laplacian in mixed form.

• Case 3 (NGL1): the first-order PDE (69) with ρ = 1 is approximated by the non-standard Galerkin
technique based on the L1-setting described in Section 4.4; a family of uniform meshes with stepsize
h = 2−i, i ∈ {2, . . . , 6}, is employed. The condition number κ1(A) behaves like h−1 in agreement
with Theorem 4.14. The Euclidean condition number κ2(A) appears to behave like h−1 also and
κ2(A) < κ1(A). Finally, owing to the particular structure of the stiffness matrix, the condition number
κ∞(A) is equal to κ1(A).
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Table 1. Condition numbers of the stiffness matrix as a function of meshsize for the three test cases.

h−1 LapMix h−1 GaLS h−1 NGL1
κ1(A) κ2(A) κ∞(A) κ1(A) κ2(A) κ∞(A) κ1(A) κ2(A)

4 14.6 8.5 13.5 10 20.9 68.5 41.5 4 50.7 36.6
8 26.6 16.7 25.5 20 36.1 139.0 81.9 8 101.2 72.7

16 50.6 32.9 49.5 40 60.6 282.8 157.9 16 202.3 143.9
32 99.5 64.9 97.5 80 123.5 430.3 320.7 32 404.6 285.7
64 194.5 129.0 193.5 — 64 809.1 568.8

To sum up, we observe that in the three test cases, the numerical predictions match the theoretical results
whenever available.

A. Technical results

A.1. Estimates of κs,p,h and κt,p,h

Let {Th}h>0 be a shape-regular family of meshes of Ω. Recall that the family {Th}h>0 is said to be quasi-
uniform if there is c, independent of h = maxK∈Th

(hK), such that h ≤ cminK∈Th
(hK). This section collects

the main estimates of κs,p,h and κt,p,h under the assumption that the family {Th}h>0 is quasi-uniform. The
proof is well-known for p = 2 and can be easily adapted to handle the case p ∈ [1,+∞]. For completeness, the
proof is briefly presented in the general case.

Let {K̂, P̂ , Σ̂} be the reference finite element on which Wh is constructed. For each cell K, denote by
TK : K̂ −→ K the transformation that maps the reference cell K̂ to K. For the sake of simplicity, assume that
TK is affine, i.e., Ω is a polyhedron. Moreover, assume the following:

Wh ⊂ {wh ∈ [L1(Ω)]n; ∀K ∈ Th, (wh ◦ T−1
K )|K ∈ P̂}. (79)

See [4, 5, 8, 10] for more details on the construction of finite element spaces.

Lemma A.1. If {Th}h>0 is quasi-uniform, there exist 0 < c1 ≤ c2 such that

∀h, ∀wh ∈Wh, c1h
d
p ‖CWh

wh‖p ≤ ‖wh‖Lp(Ω) ≤ c2h
d
p ‖CWh

wh‖p. (80)

As a result,
∀h, c1

c2
≤ κs,p,h ≤ c2

c1
· (81)

Proof. Assume 1 ≤ p < +∞. The case p = +∞ can be treated similarly.
(1) Let {θ̂1, . . . , θ̂nsh} be the local shape functions for the reference finite element. Denote by Snsh the unit
sphere in R

nsh for the ‖ · ‖p-norm and define the operator

ψ : Snsh � η �−→
∥∥∥ nsh∑

k=1

ηkθ̂k

∥∥∥
Lp(K̂)

∈ R.

The operator ψ is clearly continuous. Moreover, since Snsh is compact, ψ reaches its minimum and its maximum,
say ĉ1 and ĉ2, respectively. Assume that ĉ1 = 0. Then, there exists η ∈ Snsh such that ψ(η) = 0, yielding∑nsh

k=1 ηkθ̂k = 0. Since {θ̂1, . . . , θ̂nsh} is a basis, this implies η1 = . . . = ηnsh = 0, contradicting the fact that
η ∈ Snsh . Therefore, ĉ1 > 0. Consider now Û ∈ R

nsh with Û 
= 0. Let û =
∑nsh

i=1 Ûiθ̂i and ηi(û) = Ûi/‖Û‖p
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for 1 ≤ i ≤ nsh. Clearly, η(û) = (ηi(û))1≤i≤nsh is in Snsh . Since ψ(η(û)) = ‖û‖Lp(K̂)/‖Û‖p, the following
inequalities hold:

∀Û ∈ R
nsh , ĉ1 ‖Û‖p ≤ ‖û‖Lp(K̂) ≤ ĉ2 ‖Û‖p. (82)

(2) Consider now an arbitrary elementK in the mesh. Denote by TK : K̂ → K the corresponding transformation
and by {θ1, . . . , θnsh} the local shape functions. For U ∈ R

nsh , set u =
∑nsh

i=1 Uiθi and û = u ◦ TK . Observing
that Û = U and changing variables in the integral in (82) yields

∀U ∈ R
nsh ,

(
meas(K)

meas(K̂)

) 1
p

ĉ1 ‖U‖p ≤ ‖u‖Lp(K) ≤
(

meas(K)

meas(K̂)

) 1
p

ĉ2 ‖U‖p.

Clearly, meas(K)

meas(K̂)
≤ chd

K ≤ chd. Furthermore, the quasi-uniformity of the mesh family implies c′hd ≤ meas(K)

meas(K̂)
.

As a result, there are 0 < c1 ≤ c2 such that

∀h, ∀K ∈ Th, ∀U ∈ R
nsh , c1h

d
p ‖U‖p ≤ ‖u‖Lp(K) ≤ c2h

d
p ‖U‖p.

(3) Let wh ∈Wh and set W = CWh
wh, i.e., wh =

∑N
i=1 Wiψi. Step 2 shows that

∀h, ∀K ∈ Th, c1h
d
∑

i∈ΥK

|Wi|p ≤ ‖wh‖p
Lp(K) ≤ c2h

d
∑

i∈ΥK

|Wi|p,

where ΥK is the set of indices i such that the intersection of K with the support of the global shape function
ψi has non-zero measure. Summing over the elements yields

c1h
d
∑

K∈Th

∑
i∈ΥK

|Wi|p ≤ ‖wh‖p
Lp(Ω) ≤ c2h

d
∑

K∈Th

∑
i∈ΥK

|Wi|p.

Since {Th}h>0 is shape-regular, it is clear that the cardinal of ΥK is bounded uniformly in h; hence, (80) holds.
(4) Estimate (81) is a direct consequence of (80). �

Remark A.2. The above proof can be easily adapted if the finite elements are not locally defined by the change
of variable (wh ◦ T−1

K )|K ∈ P̂ but by some other scaling like for Raviart–Thomas-like elements or Nédélec-like
elements.

Remark A.3. If {Th}h>0 is not quasi-uniform, the lower bound in (80) holds with h
d
p

min and the upper bound

holds with h
d
p
max , where hmax and hmin are the largest and smallest cell diameters in the mesh, respectively;

see, e.g., [1].

Remark A.4. When p = 2, it is possible to interpret ms,p,h, Ms,p,h, mt,p,h, and Mt,p,h in terms of eigenvalues.
Define the mass matrix Ms = (

∫
Ω
ψiψj)1≤i,j≤N . Observe that Ms is symmetric positive definite. Let λs and

Λs be the smallest and largest eigenvalue of Ms, respectively. Likewise define the mass matrix associated with
the global shape functions in Vh, i.e., Mt = (

∫
Ω ϕiϕj)1≤i,j≤N . The smallest and largest eigenvalue of Mt are

denoted by λt and Λt, respectively. Definitions (13) and (14) imply

ms,2,h = λ
1
2
s , Ms,2,h = Λ

1
2
s , (83)

mt,2,h = λ
1
2
t , Mt,2,h = Λ

1
2
t . (84)
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A.2. Existence of large-scale discrete functions

Let Z ⊂ L be two Banach spaces with continuous embedding. Denote by 1
cP

the norm of the embedding
operator, i.e.,

1
cP

= sup
z∈Z

‖z‖L

‖z‖Z
· (85)

Let {Zh}h>0 be a family of finite-dimensional vector spaces equipped with the norm ‖ ·‖Zh
. Assume Zh ⊂ L for

all h > 0. Introduce Z(h) = Z + Zh and equip this space with a norm ‖ · ‖Z(h) such that ‖ · ‖Z(h) = ‖ · ‖Zh
on

Zh and Z is uniformly continuously embedded in Z(h). Denote by cinj the uniform embedding constant, i.e.,
‖z‖Z(h) ≤ cinj‖z‖Z for all z ∈ Z. Assume moreover that the family {Zh}h>0 has the following approximability
property:

∀z ∈ Z, lim
h→0

inf
zh∈Zh

‖z − zh‖L + ‖z − zh‖Z(h) = 0. (86)

Lemma A.5. Under the above assumptions, there is h0 such that for all h ≤ h0, there is z̃h ∈ Zh\{0} such
that

‖z̃h‖Zh
≤ 2cP cinj‖z̃h‖L. (87)

Proof. The definition of cP implies that there exists z̃ ∈ Z\{0} such that ‖z̃‖Z ≤ 3
2cP ‖z̃‖L. Let ε > 0. The

approximability property implies that there is hε such that for all h ≤ hε, there is z̃h ∈ Zh satisfying

‖z̃ − z̃h‖L ≤ ε‖z̃‖L, ‖z̃ − z̃h‖Z(h) ≤ εcP cinj‖z̃‖L.

Then,

‖z̃h‖Zh
≤ ‖z̃ − z̃h‖Z(h) + ‖z̃‖Z(h) ≤ εcP cinj‖z̃‖L + cinj‖z̃‖Z ≤ cP cinj(ε+ 3

2 )‖z̃‖L.

Moreover,
‖z̃h‖L ≥ ‖z̃‖L − ‖z̃ − z̃h‖L ≥ (1 − ε)‖z̃‖L.

Then,
‖z̃h‖Zh

‖z̃h‖L
≤ cP cinj

3
2 + ε

1 − ε
·

Conclude using ε = 1
6 . �

Remark A.6. If Z = H1
0 (Ω), L = L2(Ω), and ‖z‖2

Z =
∫
Ω ∇z·∇z, then cP is the square root of the first eigen-

value of the Laplace operator supplemented with homogeneous Dirichlet boundary conditions. This motivates
the fact that the function z̃h provided by Lemma A.5 is termed a large-scale discrete function.
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