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INNER PRODUCTS IN COVOLUME AND MIMETIC METHODS
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Abstract. A class of compatible spatial discretizations for solving partial differential equations is
presented. A discrete exact sequence framework is developed to classify these methods which include
the mimetic and the covolume methods as well as certain low-order finite element methods. This con-
struction ensures discrete analogs of the differential operators that satisfy the identities and theorems of
vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This
paper demonstrates that these methods differ only in their choice of discrete inner product. Finally,
certain uniqueness results for the covolume inner product are shown.
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1. Introduction

This paper presents a class of compatible spatial discretization methods for solving partial differential equa-
tions. This class includes the mimetic numerical method of Hyman and Shashkov which relies on primary and
dual discrete differential operators and the covolume method of Nicolaides, which relies on a dual mesh, in two
dimensions a Delaunay-Voronoi triangulation. Both of these methods have been successfully applied to prob-
lems in electromagnetics, heat, diffusion and fluid flow [2,9,13,15,16]. We demonstrate that these two methods
differ only in the choice of discrete inner products on the discrete function spaces and in this way we extend
these methods to an entire class of compatible discretizations.

In the equations of electromagnetics, discretizations that do not preserve fundamental vector calculus prop-
erties may lead to spurious approximations. For example, if the divergence-free condition on the magnetic field
is not preserved in an appropriate sense at each time step physically unrealistic solutions can result. For this
reason, recent attention has been paid to the importance of compatible spatial discretizations; methods which
appropriately preserve important physical relations expressed by vector calculus in the continuous system of
differential equations.

In the application of finite element methods to Maxwell’s equations it is the edge elements of Raviart-Thomas
and Nedelec [11,12,17] that preserve the necessary conforming properties. That these function spaces preserve
composition properties, integral identities, and existence of potential function properties is most easily seen
through the use of exact sequences. Arnold has elegantly described these discrete differential complexes and
the connection between edge elements and Whitney forms has been explored by Bossavit and Hiptmair [4,5].
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These sequences have been used to analyze the stability of certain function spaces for other partial differential
equations [1].

The discretization algorithms in this paper may be viewed as generalized finite difference techniques: they
serve as a useful and often simpler alternative to the finite element method. Using discrete differential operators
they provide a direct discretization of systems of partial differential equations from electromagnetics, diffusion
and fluid flow. As they do not rely on variational forms of the equations they are particularly amenable to
solving the full time-varying set of Maxwell’s equations.

The covolume method of Nicolaides and the mimetic method of Hyman and Shashkov were both developed in
the 1990s and by design preserve standard vector calculus properties. In addition to providing physically realistic
approximations, the discrete vector calculus structure on which these methods are based is an essential part of
the convergence rate analysis. In particular, the discrete Helmholtz decomposition is crucial in demonstrating
existence and uniqueness of solutions [10,13,18]. A discrete exterior calculus (DEC) has also recently been
studied by Hirani for more general discrete manifolds, and here the focus is on preserving the general Stokes’
Theorem and a Hodge decomposition [6].

This paper places the mimetic and covolume methods within a discrete exact sequence framework from which
it becomes clear that they belong to an entire class of algorithms that preserve essential calculus identities. This
structure guarantees discrete analogs of Stokes’ Theorem and a Helmholtz decomposition among other essential
vector calculus properties.

This framework allows for new insights into the covolume method by viewing it as a dual operator method. It
allows for convergence analysis from the covolume method to be adapted to prove convergence for the mimetic
method in certain systems of equations [18]. Finally, this view lends itself to developments in higher-order
difference methods.

In the section that follows, we define the discrete function spaces, we define the notion of a discrete in-
ner product on these spaces and discuss possible methods of construction, and finally we define the discrete
differential operators that act on these spaces.

In the third section we demonstrate that any choice of inner product yields operators that satisfy certain
discrete vector calculus analogues and in particular a discrete Helmholtz orthogonality. This generalizes the
results from [10] and uses techniques from [13]. Following recent work in finite element theory, see [1], we
demonstrate how these properties can be placed in the framework of exact sequences.

In the fourth section we discuss the inner products on the edge spaces in greater depth. We analyze their
accuracy as L2 approximations and prove certain unique properties of the covolume inner product that make it
particularly well suited for numerical work.

2. Finite spaces and discrete operators

This section is devoted to the construction of discretizations of the differential operators divergence, curl,
and gradient and of the finite-dimensional function spaces on which they act. We restrict our attention to R

2

although the same formulations can be shown in three dimensions [18]. The discrete operators developed in this
section generalize and include those found in Nicolaides [13] and Hyman and Shashkov [7,8].

We begin by defining certain necessary notation for a triangular mesh Ωh in R
2. On a simply connected

polygonal domain Ω we place a triangular mesh Ωh. Denote by �zk for k = 1, . . . , z the ordered nodes of the
mesh. This ordering induces an orientation on the edges σi for i = 1, . . . , e and we write hi for the length of σi.
Let tj for j = 1, . . . , p denote the triangles of the mesh and |tj | their areas.

We assume the interior nodes, numbering z0, are ordered first and likewise the interior edges i = 1, . . . , e0
and note that the number of boundary edges and the number of boundary nodes is equal, i.e. z − z0 = e− e0.

If the triangulation, Ωh, is a Delaunay triangulation then we introduce the following additional notation.
With each node �zk we associate a region called a cotriangle or covolume region. This region is constructed by
connecting the circumcenters of the triangles adjacent to the node. The resulting polygon is denoted t′k and
its area |t′k|. Each line segment connecting two adjacent circumcenters bisects an edge σi. This coedge will be
written σ′

i and its length h′i.
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Finally, with each triangle tj we associate a point �pj . There are a number of possible choices for the placement
of this point inside the triangle, or possibly outside. These choices include the circumcenter and the centroid
but may also be arbitrary.

2.1. Finite-dimensional function spaces

On the triangulation Ωh there are four different finite-dimensional function spaces. Two of these discrete
function spaces serve to approximate vector-valued functions. They are associated with the edges. The other
two discrete function spaces are associated with either the nodes �zk or the triangles tj .

The differential operator curl acts on three-dimensional vector fields. Therefore, when necessary, a planar
vector field �u(x, y) will be written �u(x, y, z) = (u1(x, y), u2(x, y), 0) so that we can make sense of curl�u. Similarly,
the resulting vector field curl�u = (0, 0, ∂u2

∂x −
∂u1
∂y ) can be considered a scalar-valued function on the plane.

The first of the two discrete scalar-valued function spaces is the triangle space, denoted T . It is a real vector
space of dimension p. For an element φ̂ in T we associate the value φ̂j with the point �pj in Ωh. To project a
continuous scalar-valued function φ on Ω onto the space T one can consider either a pointwise evaluation at �pj ,
or an average of φ over tj .

The other discrete scalar-valued function space is the nodal space N which is a real vector space of dimen-
sion z. For an element ψ̂ in N we associate the value ψ̂k with the node �zk in Ωh. The interior nodal space, the
restriction of N to the interior nodes, will be denoted N0. It is a real vector space of dimension z0. Projections of
a continuous scalar-valued function ψ on Ω onto N may similarly be performed by either sampling or averaging
over the covolume region t′k. Either ψ̂k = ψ(�zk) or ψ̂k = 1

|t′k|
∫
t′k

ψ dA.

The two different discrete vector field spaces on Ωh both associate values with the edges. We introduce a
local coordinate frame and its subsequent notation for each edge σi. Let �xi be the midpoint of the edge and
define �τi to be the unit vector tangent to the edge in the positive direction. The unit vector normal to the edge,
�ni, is aligned so that (�ni, �τi) is a right-handed system.

The normal edge spaceM is a real vector space of dimension e. For an element ŵ in M the value ŵi ∈ R is
associated with the normal vector ŵi�ni at the point �xi. The interior normal edge space M0 is the restriction
of M to the interior edges. It is a vector space of dimension e0. We consider two different projections of a
continuous vector field �w on Ω ontoM (and similarly for M0). Either ŵi is a pointwise evaluation or an edge
average. So that ŵi = �w(�xi) · �ni or ŵi = 1

hi

∫
σi

�w · �ni dl.

The tangential edge space E is a real vector space of dimension e. For an element û in E the value ûi ∈ R is
associated with the tangent vector ûi�τi at the point �xi. The interior tangential edge space E0 is the restriction of E
to the interior edges. It is a real vector space of dimension e0. We again consider the following two projections
of a continuous vector field �u on Ω onto E (and similarly for E0): either ûi = �u(�xi) · �τi or ûi = 1

hi

∫
σi

�u · �τi dl.

2.2. The primary operators

We approximate the three differential operators divergence, curl and gradient. Given the discrete spaces
defined above there is a very natural and common way to approximate these three operators through the use
of their integral formulations.

For a continuous scalar-valued function ψ we approximate gradψ(�xi) · �τi. In integral form we have

gradψ(�xi) · �τi ≈
1
hi

∫
σi

gradψ · �τi ds ≈ 1
hi

(ψ(�zk+1)− ψ(�zk)).

This directional derivative acts naturally on the space of nodal scalar values in the oriented direction of an edge.
Thus the discrete operator G : N −→ E acts on ψ̂ ∈ N as follows:

(Gψ̂)i =
ψ̂k+1 − ψ̂k

hi
·
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Figure 1. Discrete gradient and divergence operator stencils.

The divergence operator is approximated using the integral formulation of the operator found in the diver-
gence theorem. For a triangle t, let �ν be the unit outward normal vector to the boundary. An approximation
of the divergence via the divergence theorem is

div �w(�p) ≈ 1
|t|

∫
t

div �w dA =
1
|t|

∫
∂t

�w · �ν dl ≈ 1
|t|

3∑
i=1

±hi (�w(�xi) · �ni)·

This operator acts on the normal (to the edge) components of a vector field and approximates the divergence
at a point �pj in the triangle. For the edge orientation depicted in Figure 1, the discrete operator D :M −→ T
acts on ŵ by

(Dŵ)j =
1
|tj |

(h1ŵ1 + h2ŵ2 − h3ŵ3).

The curl operator is also approximated using an integral formulation, in this case Stokes’ Theorem. Let
�k = (0, 0, 1) and �s be the positively oriented unit tangent vector along the boundary of the triangle t. Then the
approximation is

curl�u(�p) · �k ≈ 1
|t|

∫
t

curl�u · �k dA =
1
|t|

∫
∂t

�u · �s dl ≈ 1
|t|

3∑
i=1

±hi (�u(�xi) · �τi).

Thi s operator acts on the tangential (to the edge) components of a vector field �u and approximates the curl at
the point �pj . For the edge orientation depicted in Figure 2, the discrete operator C : E −→ T acts on û by

(Cû)j =
1
|tj |

(h1û1 + h2û2 − h3û3).

There is one more operator to consider as a primary operator and to do this we view the finite-dimensional
scalar-valued function space N as a vector-valued function space with only a �k component. Because a vector
field �ω = (0, 0, ω) = ω�k can be projected onto ω̂ ∈ N we can, when necessary, consider elements of N to be
discrete vector-valued functions. This interpretation leads to another discrete curl operator.

If we place a hi × hi square surface S on the edge σi so that the vector �ni normal to the edge is also normal
to the surface then we can use Stokes’ Theorem to approximate curl �ω(�xi) · �ni.

Since only two of the edges contribute to the circulation of �ω about the surface S the approximation of
curl �ω(�xi) · �ni reduces to 1

hi
(ω̂k+1 − ω̂k). Therefore define K : N −→ M to be

(Kω̂)i =
ω̂k+1 − ω̂k

hi
·
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Figure 2. Discrete curl operators’ stencils.

The discretization of each of these four primary discrete operators relies on local values from the discrete
spaces E , M, N , and T . For this reason, we borrow the nomenclature from finite difference methods and refer
to these operators as having local stencils.

The discrete operators thus defined have domains and ranges G : N −→ E , K : N −→ M, C : E −→ T ,
and D :M −→ T and therefore the only compositions that we can perform are CG and DK.

With respect to the standard basis in R
n (for appropriate n) we can represent these operators as matrices.

So that, for example, the operator G is written as an e × z matrix with two non-zero entries + 1
hi

and − 1
hi

in each row i. Due to the one-to-one orientation preserving correspondence between the spaces E and M the
matrices that represent the operators G and K are numerically identical as are the matrices for C and D.

These primary operators are the same for every method in the class of algorithms that we investigate. The
operators that we define in Section 2.4 (the dual operators) which complete the collection of discrete operators
needed (to solve div-curl systems, Maxwell’s equations, and diffusion) will differ from each other due to their
dependence on a choice of discrete inner product (chosen to approximate the integral inner products of L2(Ω)
and (L2(Ω))2) on the discrete function spacesM, E , N , and T .

2.3. The inner products

We approximate the L2(Ω) and (L2(Ω))2 inner products by suitably extending an element in E , T , N , andM
to a full vector or scalar-valued field on Ω. The continuous inner product on these extensions can be represented
as a finite dimensional bilinear form and thus there is a matrix representation. The bases with respect to which
we represent these matrices are again the standard bases in R

n for the appropriate n. In the spaces E , T , N
and M these basis vectors correspond to one edge, one triangle, or one node being nonzero. Each choice of
extension of an element of a discrete space yields a different discrete inner product on the space.

For two vectors �a and �b in R
n we will denote by (�a,�b) and �a ·�b the standard Euclidean inner product

n∑
i=1

aibi.

All other inner products, e.g. S, will be written [·, ·]S .
Given two elements ρ̂ and φ̂ in T we construct piecewise constant scalar-valued functions ρh and φh by

extending the values ρ̂j and φ̂j throughout the triangle tj . With the triangle areas, |tj |, we let T be the p× p
diagonal matrix with Tjj = |tj |. The representation of the approximation to the continuous inner product is
then

[ρ̂, φ̂]T := ρ̂ · T φ̂ =
p∑

j=1

|tj | ρ̂j φ̂j =
∫
Ω

ρh φh dA.

Given two elements ω̂ and ψ̂ in N we again construct piecewise constant scalar-valued functions ωh and ψh

in Ωh. Since the value ω̂k is associated with the node �zk the region to which it should be extended is not as
apparent as in the case of the triangle extension for T . The only requirement that we make is that the regionsNk

associated with the nodes (and thus the extension) should partition Ωh, i.e. they should not overlap and their
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Figure 3. Vector field extensions.

union should cover the entire domain. In the case of a Delaunay triangulation an obvious choice for Nk would
be the covolume region. This is the domain about the node that results from connecting the circumcenter of
each adjacent triangle.

Let N be the z × z diagonal matrix with Nkk = |Nk|, where |Nk| is the area of the region Nk. These areas
or nodal weights yield a representation of the approximation to the continuous inner product:

[ω̂, ψ̂]N := ω̂ ·Nψ̂ =
∑

k

|Nk| ω̂k ψ̂k =
∫
Ω

ωh ψh dA.

The z0 × z0 matrix that represents the restriction of the inner product N to the space N0 will be denoted N0.
The inner product on the tangential edge space, E , requires a vector-field reconstruction and there are many

suitable methods of extending an element û in E to a full vector-valued field �uh in Ω. Each method that we
consider shares the following property: the value of �uh at a point in a triangle tj depends only on the three
edge values {ûj1 , ûj2 , ûj3} of the triangle.

• Covolume inner product:
This method of extending û into the triangle t uses the circumcenter of the triangle c and three triangle
subregions created by connecting the circumcenter to the nodes. Each subregion is bordered by only
one edge and thus one value ûi. The vector

√
2ûi�τi is extended throughout the region. This results in

a vector field �uh that is constant in each subregion. See Figure 3.
This discrete inner product can be represented, with respect to the standard basis on E , as an e × e
diagonal matrix W with Wii = hih

′
i. Recall that h′i is the length of the coedge σ′

i.
We write

[û, v̂]W := û ·Wv̂ =
∑

i

ûi v̂i hih
′
i =

∫
Ω

�uh · �vh dA.

• Mimetic inner product:
This method of extending û relies on choosing three nodal subregions of each triangle tj with areas
(or nodal weights) {Vj1 , Vj2 , Vj3}. Each subregion is to be bordered by two edges. Throughout the
subregion with area Vj1 and adjacent edges σi and σi+1 the constant vector field �uhj1

is extended. This
is the unique vector that satisfies �uhj1

· �τi = ûi and �uhj1
· �τi+1 = ûi+1. Piecing together these constant

vector fields yields a full vector field �uh whose projections onto the tangential vectors of the edges agrees
with û. See Figure 3.
With respect to the standard basis on E we can represent this inner product as a matrix W̃ and write

[û, v̂]
W̃

= û · W̃ v̂ =
p∑

j=1

3∑
k=1

(�uhjk
· �vhjk

)Vjk
=
∫
Ω

�uh · �vh dA.
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• Raviart-Thomas/Nedelec method:
This method of extension is unique among the methods mentioned here in that the resulting �uh is not
a piecewise constant vector field over subregions of each triangle. Here a linear vector field is extended
throughout the triangle. With only three pieces of information about the vector field on a given triangle
a full linear vector field is not uniquely determined. Thus the extension is restricted to a particular
three-dimensional subspace of linear vector fields. For a1, a2, b ∈ R this subspace of linear vector fields is

Rt := {L : R
2 −→ R

2 : L(x, y) = (a1 − by, a2 + bx)}.

Given {û1, û2, û3} in a triangle t one can uniquely solve for a vector field inRt that satisfies L(�xi)·�τi = ûi

for i = 1, 2, 3. In each triangle the resulting vector field is divergence-free and the tangential component
of L(�x) along an edge is constant. As this extension is performed on neighboring triangles the tangential
components of the global reconstructed vector field will be continuous across the edges while the normal
components will not be [12,17].

For each matrix X representing a discrete inner product on E we denote by X0 the e0×e0 matrix that results
from deleting the rows and columns in X that correspond to the boundary edges. This matrix X0 represents
the discrete inner product on E0.

The finite vector spaces M and E share the same possibilities for discrete inner products. The methods of
extending the values of an element ŵ ∈ M throughout the triangle t are in all but one case the same as the
methods of extending û ∈ E .

The covolume inner product on M is exactly the same as the covolume inner product on E . Similarly, the
mimetic inner product is the same on both of these spaces. However, the Raviart-Thomas/Nedelec method
of extending the three edge values (ŵ1, ŵ2, ŵ3) throughout a triangle t differs. For M the three-dimensional
subspace of linear vector fields is Pt := {L : R

2 −→ R
2 : L(x, y) = (a1 + bx, a2 − by)}.

Given {ŵ1, ŵ2, ŵ3} in a triangle t one can uniquely solve for a vector field in Pt that satisfies L(�xi) · �ni = ŵi

for i = 1, 2, 3. The resulting field is curl-free in the triangle t and the normal component of L(�x) along an edge
is constant. As this extension is performed on neighboring triangles the normal components across the edges
will be continuous while the tangential components will not [12,17].

We denote by M a generic matrix representation of an inner product onM and the restriction of the discrete
inner product to the subspaceM0 will be denoted M0. This e0 × e0 matrix results from deleting the rows and
columns in M corresponding to boundary edges.

2.4. The dual operators

Our goal now is to complete our collection of discrete operators. The primary operators alone restrict our
ability to make all desired compositions, they do not act on all appropriate discrete spaces and they can not
satisfy the discrete integral identity analogs which we require. The dual operators that we derive in this section
combined with the primary operators achieve these three goals.

Following the mimetic method, the construction of the dual operators relies on a discrete version of the
integration by parts identities that exist for continuous vector and scalar-valued functions and the L2 inner
products. Let �u and �v be vector fields on Ω and φ a scalar-valued function. Let �ν be the outward unit vector
normal to the boundary of Ω and �τ the unit vector tangent to the boundary aligned so that (�ν, �τ) forms a right
hand system. Integration by parts gives the following two identities:∫

Ω

φ div �u dV = −
∫
Ω

�u · grad φ dV +
∫

∂Ω

φ (�u · �ν) dA. (2.1)

∫
Ω

�v · curl �u dV =
∫
Ω

�u · curl �v dV −
∫

∂Ω

�v · (�u× �ν) dA. (2.2)
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The primary discrete operators G, C, D, and K are independent of the choice of discrete inner products on
the spaces E , M, N , and T . The dual operators will differ depending on the choice of inner product. The
following construction is shown for arbitrary inner products X , M , N , and T with restricted inner products X0

on E0, M0 onM0 and N0 on N0.

2.4.1. The divergence and gradient as adjoint operators

The primary operator G : N −→ E can be restricted to G0 : N0 −→ E0. The resulting e0 × z0 matrix
representing G0 is obtained from G by deleting those columns and rows corresponding to boundary edges or
boundary nodes.

If φ = 0 on the boundary of Ω then the boundary integral in the right side of equation (2.1) will vanish. The
function φ can be projected onto the subspace N0 and we can approximate the right hand side of equation (2.1)
for �u projected onto E0 as

−
∫
Ω

�u · grad φ dV +
∫

∂Ω

φ (�u · �ν) dA = −
∫
Ω

�u · grad φ dV ≈ −[û, G0φ̂]X0 .

We can not currently make sense of the left hand side of equation (2.1) for û ∈ E0 since D acts on M. A
discrete approximation to the divergence which did act on E0, say D∗ : E0 −→ N0, would allow us to discretize
the left side of equation (2.1) as ∫

Ω

φ div �u dV ≈ [φ̂, D∗û]N0 .

To ensure a discrete analog of this vector calculus identity we define the dual operator D∗ : E0 −→ N0 to be
the unique operator which satisfies for all φ̂ ∈ N0 and all û ∈ E0 the discrete version of the integral identity (2.1).
That is

φ̂ ·N0D
∗û = [φ̂, D∗û]N0 = −[û, G0φ̂]X0 = (G0φ̂) ·X0û.

Therefore D∗ := −N−1
0 GT

0 X0.

If instead we consider φ̂ ∈ T and û ∈ M0 then the primary discrete divergence operator allows us to
approximate the integral in the left hand side of equation (2.1) as∫

Ω

φ div �u dV ≈ [D0û, φ̂]T .

Here D0 is the restriction of D to M0 whose p× e0 matrix representation is obtained from D by deleting those
columns corresponding to boundary edges. Thus D0 :M0 −→ T .

This leads to the dual discrete gradient G∗ : T −→M0. This G∗ is the unique operator satisfying

D0û · T φ̂ = [D0û, φ̂]T = −[û, G∗φ̂]M0 = −û ·M0(G∗φ̂).

Thus the dual operator G∗ := −M−1
0 DT

0 T .

2.4.2. The curl as a self-adjoint operator

As above, we consider the restriction of C : E −→ T to the domain E0 by deleting the columns in the matrix
corresponding to boundary edges. We denote this resulting p× e0 matrix operator C0.

A vector field �u satisfying �u · �τ = 0 on the boundary of Ω can be projected onto E0. This condition is
equivalent to �u × �ν = 0 on the boundary of Ω which results in the boundary integral in equation (2.2) being
zero.



INNER PRODUCTS IN COVOLUME AND MIMETIC METHODS 949

If �v has only a �k component, �v = (0, 0, v), then we can project it onto the finite space T and the left hand
side of equation (2.2) can be approximated using the discrete inner product on T . Thus we have∫

Ω

�v · curl �u dV ≈ [v̂, C0û]T .

Since û is an element of E0 the right hand side of equation (2.2) must be discretized using the discrete inner
product X0 on E0. We let C∗ be the formal adjoint operator that acts on T and has range E0:∫

Ω

�v · curl �u dV ≈ [v̂, C0û]T = [û, C∗v̂]X0 ≈
∫
Ω

�u · curl �v dV.

We require that for all v̂ ∈ T and all û ∈ E0 the operator C∗ satisfies

C0û · T v̂ = [C0û, v̂]T = [û, C∗v̂]X0 = û ·X0C
∗v̂.

Therefore this dual curl operator C∗ := X−1
0 CT

0 T .
To define the dual operator to K we again restrict K to N0 with range M0 by deleting those rows and

columns in K corresponding to boundary edges and boundary nodes. Here we consider û in M0.
If the vector field �v = (0, 0, v) vanishes on ∂Ω then the boundary integral in equation (2.2) is zero. Such a

�v can be projected onto the discrete space N0 and the discrete approximation of the integral identity is∫
Ω

�v · curl �u dV ≈ [v̂, K∗û]N0 = [û,K0v̂]M0 ≈
∫
Ω

�u · curl �v dV.

With the discrete inner products N0 on N0 and M0 on M0 this results in the other dual curl operator K∗ :=
N−1

0 KT
0 M0.

These four dual operators together with the four primary operators ensure every possible composition of
differential operators has an analog at the discrete level. Moreover every finite function space can be acted on
by an appropriate discrete operator. Additionally, these discrete operators and discrete spaces exhibit many
important vector calculus analogs. These properties, essential to the analysis of the discrete differential systems
of equations to which they are applied, are explored in the next section.

3. Discrete vector calculus properties

The specific examples of vector calculus properties that transfer to these discrete operators and finite spaces
include the compositions of particular differential operators that result in zero, integration by parts, and the
existence of scalar and vector potentials. Moreover, with this structure in place other discrete analogs of
continuous properties result. Conservation properties and decomposition theorems are particularly important
in the study of partial differential equations and preserving them in the discrete system ensures everything from
existence and uniqueness of solutions to stability.

This section describes the transfer of vector calculus identities of continuous functions and differential oper-
ators to discrete analogs on these finite spaces and discrete operators. The introduction of an exact sequence
which encodes these discrete vector calculus analogs creates a useful framework with which to view these prop-
erties.

The preservation of these vector calculus identities on the discrete operators is independent of the choice of
discrete inner products on the spaces E , N ,M, and T and we assume nothing about the inner product except
that it is a symmetric positive definite bilinear form on the vector space R

n for the appropriate dimension n.
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3.1. Composition of operators and existence of potentials

For a continuous vector field �u defined on a simply connected domain Ω the following composition of differ-
ential operators always results in zero: div curl �u = 0. The discrete analog of this composition property requires
both primary and dual operator compositions of the discrete divergence and curl operators to be zero. Thus we
need to verify that for all ω̂ ∈ N and ρ̂ ∈ T we have DKω̂ = 0 and D∗C∗ρ̂ = 0.

Similarly, the following composition acting on a continuous scalar-valued function φ is always zero:
curl grad φ = �0. Here, the discrete analog requires that for all ψ̂ ∈ N and φ̂ ∈ T we have CGψ̂ = 0 and
K∗G∗φ̂ = 0.

The following theorem confirming this composition property of the primary curl and gradient operators is
found in Nicolaides’ paper [13].

Theorem 3.1. For all ψ̂ ∈ N and ψ̂0 ∈ N0, CGψ̂ = 0 and C0G0ψ̂0 = 0.

By the construction of the dual operators the following corollary immediately follows.

Corollary 3.1. For all ρ̂ ∈ T , D∗C∗ρ̂ = 0.
For all ω̂ ∈ N , DKω̂ = 0.
For all ω̂0 ∈ N0, D0K0ω̂0 = 0.
For all φ̂ ∈ T , K∗G∗φ̂ = 0.

Together this theorem and its corollaries show that every possible discrete composition that approximates
(div curl) and (curl grad) annihilates the corresponding vector or scalar-valued function approximation in the
discrete spaces N and T upon which it acts.

A second important property of these compositions is the existence of scalar or vector-valued potential
functions. For a continuous vector field �u defined on the simply connected planar domain Ω we have that if
curl �u = 0 then �u = grad φ for some scalar field φ. Similarly, for a continuous vector field �v, if div �v = 0 then
�v = curl �w for some vector field �w.

These functions φ and �w are called potentials. The transfer of these properties to the discrete operators
follows from this theorem also proved in [13].

Theorem 3.2. If Cû = 0 then there exists ψ̂ ∈ N such that Gψ̂ = û.
If C0û = 0 then there exists ψ̂ ∈ N0 such that G0ψ̂ = û.

The corollary statements can be proved in the same manner as the above theorem: using a subspace dimen-
sionality argument and Euler’s formula for a triangulation with no holes.

Corollary 3.2. If D∗û = 0 then there exists φ̂ ∈ T such that C∗φ̂ = û.
If Dv̂ = 0 then there exists ω̂ ∈ N such that Kω̂ = v̂.
If D0v̂ = 0 then there exists ω̂ ∈ N0 such that K0ω̂ = v̂.
If K∗v̂ = 0 then there exists ρ̂ ∈ T such that G∗ρ̂ = v̂.

3.2. The exact sequence

The discrete analogs of vector calculus properties described above can be encoded in the larger framework
of an exact sequence. This method of describing certain important properties of the finite-dimensional function
spaces is often used in finite element methods for stability analysis [1].

In the case of Raviart-Thomas/Nedelec elements, the exactness of the sequence is inherited through the
commutative diagram from the exactness properties of the continuous differential operators (viewed as operators
on differential forms).

In our case, the exactness is built in from the definitions of the discrete operators, the choice of discrete
spaces and the construction of the dual operators. In addition to the exactness properties the sequences capture
the discrete analog of integration by parts.

These discrete features are expressed in Figure 4 (a similar diagram exists for the operators K,D,G∗ and K∗

acting on spaces N ,M, and T ). Here the discrete function spaces are placed horizontally with the appropriate
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Figure 4. Exact sequence for discrete gradient and curl operators.

primary operators acting from left to right and arrows denoting their domains and ranges. The dual operators
and their arrows from domains to ranges, act from right to left. In this way, the exactness of the sequence
captures the null compositions and the existence of potentials. The dual operators, derived through the discrete
inner products on the spaces, ensure the preservation of a discrete analog of integration by parts.

3.3. The Helmholtz decomposition

One very important consequence of the preservation of the above properties is the existence of the Helmholtz
orthogonality property. On a simply connected domain Ω in R

2 we consider two continuous vector fields �u
and �v. Let div �u = 0 and curl�v = 0. If either (�v · �τ ) = 0 or (�u · �ν) = 0 on ∂Ω then the Helmholtz orthogonality
property states that [�u,�v]L2(Ω) = 0.

Since div �u = 0 there exists a vector potential, �ω, such that �u = curl �ω. Similarly, since curl�v = 0, there is
a scalar potential ψ such that �v = gradψ. The importance of these potentials is shown in the following two
calculations which demonstrate the orthogonality:∫

Ω

�u · �v dA =
∫
Ω

curl �ω · gradψ dA = −
∫
Ω

ψ div curl �ω dA−
∫

∂Ω

ψ(curl �ω · �ν) dA

=
∫

∂Ω

ψ(�u · �ν) dA.

Equivalently, we can write∫
Ω

�u · �v dA =
∫
Ω

curl �ω · gradψ dA =
∫
Ω

�ω · curl gradψ dA −
∫

∂Ω

gradψ · (�ω × �ν) dA

=
∫

∂Ω

�v · (�u× �ν) dA = −
∫

∂Ω

�u · (�v × �ν) dA.

By the boundary condition hypothesis, one of these two expressions is zero. This orthogonality property relies
on the vector calculus properties of integration by parts, composition theorems, and the existence of potentials.
As these properties all have discrete analogs it follows that a discrete analog of the Helmholtz decomposition
exists as well.

Lemma 3.1. (1) For û, v̂ ∈ E0. If C0û = 0 and D∗v̂ = 0 then [û, v̂]E0 = 0.
(2) For û, v̂ ∈M0. If K∗û = 0 and D0v̂ = 0 then [û, v̂]M0 = 0.

Proof. This follows from Theorems 3.2.1, 3.2.2 and their corollaries. �

The spaces E0 andM0 can thus be decomposed into a discrete divergence-free space and a discrete curl-free
space.
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The discrete Helmholtz decomposition property is an essential part of the theory of this class of discrete
approximations to partial differential equations. It not only captures important physical properties present in
the continuous equations, it is used to determine the existence and uniqueness of solutions as well as analyze the
convergence of the discrete solutions to the systems of equations to which these methods are applied [10,13,18].

The existence of this discrete decomposition is a direct consequence of the discrete vector calculus properties
captured in the exact sequence diagram. The spaces, operators, and constructions described here are just one
large collection that can be placed into the exact sequence framework. But any collection of spaces and operators
that satisfy the exactness property and duality of operators that is encoded in the exact sequence will have a
discrete Helmholtz decomposition.

4. The inner products on E
This section focuses on specific properties of and relationships among the discrete inner products on the

tangential edge space E . The matrices representing these inner products are analyzed and the covolume inner
product is shown to have certain unique properties.

We restrict our attention to one triangle t and the corresponding restriction of the space E to the three-
dimensional subspace we denote by Et. The vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, the standard basis in R

3, on
this subspace will be written {û1, û2, û3}.

The discrete inner products that act on this subspace with respect to the standard basis can be represented
as 3×3 matrices. They will be described in more detail in conjunction with descriptions of the different methods
of constructing �uh. It is understood that they are always written with respect to the basis {û1, û2, û3}.

We introduce another basis for the space Et to more easily analyze how well these discrete inner products
approximate the (L2(t))2 inner product and in particular whether they yield exact approximations when acting
on projections (onto Et) of constant vector fields in R

2.
For computational purposes we consider the triangle t to be aligned at the origin with the edge σ1 along the

x-axis. The constant vector fields �e := (1, 0) and �f := (0, 1) serve as a basis for all constant vector fields in R
2

defined on the triangle. Their projections onto Et will be denoted ê and f̂ . See Figure 5.
The third vector that we choose to complete this alternate basis for Et is ĥ := (h1, h2, h3). It is important to

note that in the standard Euclidean inner product on R
3 the vectors ê and f̂ are not orthogonal but that ĥ is

orthogonal to both.
A few trigonometric identities show this:

(ĥ, ê) = h1 − h2 cosφ3 − h3 cosφ2 = 0 and

(ĥ, f̂) = h2 sinφ3 − h3 sinφ2 = 0.

The vector fields �e and �f are orthogonal with respect to the (L2(t))2 inner product and so the following three
equations are satisfied: ∫

t

�e · �edA = |t|,
∫
t

�f · �f dA = |t|, and
∫
t

�e · �f dA = 0.

It is clear that if a matrix Xt, representing a discrete inner product with respect to the standard basis
{û1, û2, û3}, is to be exact on projections (onto Et) of constant vector fields (in R

2) the following three equations
must also be satisfied:

[ê, ê]Xt = |t|, [f̂ , f̂ ]Xt = |t|, and [ê, f̂ ]Xt = 0. (4.1)

In what follows we alternately view the matrix Xt as both a bilinear operator (form), Xt : Et × Et −→ R,
and as a linear operator, Xt : Et −→ Et. The matrices described below that correspond to the various different
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methods of extending the vector û to �uh throughout the triangle t will be studied in detail in their roles as both
linear and bilinear operators.

4.1. The matrix representations

We denote by W̃t the matrix that represents the mimetic inner product. This inner product results from the
method of extending û ∈ Et to a piecewise (over subregions) constant vector field �uh in t that is described in
Section 2.3. Recall that the three subregions in the triangle t (each of which is associated with a node) have
areas (or nodal weights) {V1, V2, V3}. The matrix that represents this inner product on Et takes the form:

W̃t =

⎡⎢⎢⎣
V2

sin2 φ2
+ V3

sin2 φ3

V3 cos φ3
sin2 φ3

V2 cos φ2
sin2 φ2

V3 cos φ3
sin2 φ3

V1
sin2 φ1

+ V3
sin2 φ3

V1 cos φ1
sin2 φ1

V2 cos φ2
sin2 φ2

V1 cos φ1
sin2 φ1

V1
sin2 φ1

+ V2
sin2 φ2

⎤⎥⎥⎦.

Note that this matrix is not diagonal but that the e× e matrix W̃ is sparse. In fact each row has at most
five non-zero entries. However, the inverse of the matrix will not be sparse and the consequences of this are
addressed in the final section.

Similarly, the matrix representation of the Raviart-Thomas/Nedelec inner product is not diagonal but is
sparse.

To represent the matrix Wt for the covolume method we introduce the following additional notation. Recall
that the length of each edge σi is denoted hi and the length of each coedge σ′

i is h′i. The length of the
perpendicular bisector connecting the midpoint �xi of the edge to the circumcenter �c of the triangle is denoted h∗i .
It is important to note that if the circumcenter lies outside the triangle (across an edge σi) then h∗i will be
negative. In this case, however, the other two lengths h∗ in the triangle will be positive. See Figure 6.

The matrix Wt which represents the discrete inner product on Et ⊂ E with respect to the standard basis
{û1, û2, û3} is the following diagonal matrix:

Wt =

⎡⎣ h1h
∗
1 0 0

0 h2h
∗
2 0

0 0 h3h
∗
3

⎤⎦.
To ensure that the e × e matrix W , representing the covolume inner product on E , is positive definite it is

necessary that the triangulation be a Delaunay triangulation. In a Delaunay triangulation, while some of the
h∗i s can be negative, the length h′i, which is the sum of two h∗s never is. However, the restricted 3× 3 matrix,
Wt, need not be positive definite and therefore may not be a true inner product on R

3. We are thus using the
term “discrete inner product” on the space Et to describe any bilinear form that approximates the (L2(t))2 inner
product. We show below that a semi-definite matrix can still yield accurate approximations to the (L2(t))2

inner product.

4.2. L2 accuracy

While Section 2 allowed for any inner product on R
e to be admissible in this family of discretization methods,

in practice only those inner products that satisfy equation (4.1) should be considered.
The mimetic method of extending û to �uh makes it clear that this discrete inner product satisfies equa-

tion (4.1). A constant vector field �u in t that is projected onto Et will be reconstructed in each subregion of the
triangle. The accuracy of the discrete mimetic inner product is independent of the choice of nodal subregions
and their areas {V1, V2, V3}.

Similarly, the Raviart-Thomas/Nedelec inner product will reconstruct a constant vector field projected
onto Et.
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Figure 5. Triangle notation and alignment.

Figure 6. Signed h∗.

The covolume inner product is unique in that it is the only inner product on E with diagonal matrix W that
approximates the L2 inner product exactly on projections of constant vector fields.

Theorem 4.1. The covolume inner product Wt is the unique inner product on Et that satisfies both of the
following conditions:

(1) It is diagonal with respect to the standard basis {û1, û2, û3}.
(2) It satisfies equation (4.1).

Proof. Without loss of generality we consider the triangle from Figure 5. We first show that there is only one
3×3 diagonal matrix Q that satisfies equation (4.1) and then show that the covolume inner product Wt is equal
to Q.

Let Q =

⎡⎣ q1 0 0
0 q2 0
0 0 q3

⎤⎦.
To satisfy equation (4.1) we must have

ê ·Qê = |t|, f̂ ·Qf̂ = |t|, and ê ·Qf̂ = 0
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which we write as the following system of equations:⎡⎣ 0 − sinφ3 cosφ3 sinφ2 cosφ2

1 cos2 φ3 cos2 φ2

0 sin2 φ3 sin2 φ2

⎤⎦⎡⎣ q1
q2
q3

⎤⎦ =

⎡⎣ 0
|t|
|t|

⎤⎦.
The determinant of this matrix is easily shown to be D = sinφ1 sinφ2 sinφ3 which can not be zero and therefore
the system has a unique solution (q1, q2, q3).

We now show that qi = hih
∗
i for i = 1, 2, and 3, by showing that the system of equations above is satisfied.

The necessary calculations follow from various trigonometric identities. The third equation is shown here:

h2h
∗
2 sin2 φ3 + h3h

∗
3 sin2 φ2 = h3 sinφ2(h∗2 sinφ3 + h∗3 sinφ2)

=
1
2
h3 sinφ2(h3 cosφ2 + h2 cosφ3)

=
1
2
h1h3 sinφ2

= |t|.

The other two equations follow similarly. Thus Wt = Q and the theorem is proved. �
The covolume method has been applied to many systems of partial differential equations and convergence

analysis has been extensive. In this analysis the behavior of the matrix Xt as a linear operator is important.
Therefore the class of matrices that agree with the covolume inner product matrix, Wt, as linear operators on
the two-dimensional subspace ĥ⊥ ∈ Et is of particular interest. Let

Xt :=

⎧⎨⎩Xt :
Xt ∈ S3(R),
Xtê = Wtê,

Xtf̂ = Wtf̂

⎫⎬⎭ .

The conditions on Xt imply that every member Xt also satisfies (4.1) and therefore every member of this
class approximates the (L2(t))2 inner product on constant vector fields exactly.

As an alternative way to represent the members of X we consider particular generalized eigenvectors for these
matrices. Consider the vector q̂ := ( 1

h∗
1
, 1

h∗
2
, 1

h∗
3
). It is clear that q̂ = W−1

t ĥ.

From the orthogonality of ê and ĥ and also that of f̂ and ĥ, we have

[ê, q̂]Wt = 0 and [f̂ , q̂]Wt = 0.

Thus the vectors ê, f̂ , and q̂ form a Wt-orthogonal basis for Et.
This orthogonality transfers to the entire set X . Because ê, f̂ , and q̂ are Xt-orthogonal for every Xt ∈ Xt we

can write Xq̂ = λWtq̂ for some λ ∈ R. Therefore, every matrix in X can be expressed in the following manner
depending only on λ ∈ R.

Let E and Λ be defined as

E :=

⎛⎝ êT f̂T q̂T

⎞⎠, Λ :=

⎛⎝ 1 0 0
0 1 0
0 0 λ

⎞⎠.
Then

XtE = EΛWt

and there is a one-to-one correspondence between {Xt ∈ Xt} ←→ {λ ∈ R}.



956 K.A. TRAPP

Theorem 4.2. The mimetic inner product matrix W̃t with nodal weights Vi := |t| tan φi
3∑

k=1
tan φk

, is in the class Xt

and the generalized eigenvalue associated with q̂ = ( 1
h∗
1
, 1

h∗
2
, 1

h∗
3
) is λ =

∑
k

hk

h∗
k
.

Proof. We need to show that W̃tê = Wtê and W̃tf̂ = Wtf̂ . We will show in detail that (W̃tê)1 = (Wtê)1. The
other equations and the generalized eigenvalue calculation follow similarly.

Using the trigonometric identities 2
∑

k tanφk =
∑

k
hk

h∗
k

, h1 = 2(h∗2 sinφ3 + h∗3 sinφ2) , h∗2 = h3 cos φ2
2 sin φ3

, and

the easily derived h1
h∗
1

+ h2
h∗
2

= h3
h∗
1 cos φ2

the matrix calculation reduces to

(W̃tê)1 =
|t|∑

k tanφk

(
tanφ2

sin2 φ2

+
tanφ3

sin2 φ3

− tanφ3 cosφ3

sin2 φ3

− tanφ2 cosφ2

sin2 φ2

)
=

|t|∑
k tanφk

(
1

sinφ2 cosφ2
+

1
sinφ3 cosφ3

− cosφ3

sinφ3
− cosφ2

sinφ2

)
=

|t|∑
k tanφk

(
1

sinφ2 cosφ2
+

1
sinφ3 cosφ3

− cosφ3

sinφ3
+
h3(h2 cosφ3 − h1)

h3h2 sinφ3

)
=

|t|∑
k tanφk

(
1

sinφ2 cosφ2
+

1
sinφ3 cosφ3

− h1

h2 sinφ3

)
= h1h

∗
1

|t|∑
k tanφk

(
1

h1h∗1 sinφ2 cosφ2
+

1
h1h∗1 sinφ3 cosφ3

− 1
h∗1h2 sinφ3

)
= h1h

∗
1

|t|∑
k tanφk

(
1

h1h∗1 sinφ2 cosφ2

h3

h3
+

1
h1h∗1 sinφ3 cosφ3

h2

h2
− 1
h∗1h2 sinφ3

h1

h1

)
= h1h

∗
1

1
2
∑

k tanφk

(
h3

h∗1 cosφ2
+

h2

h∗1 cosφ3
− h1

h∗1

)
= h1h

∗
1

1
2
∑

k tanφk

(
h1

h∗1
+
h2

h∗2
+
h1

h∗1
+
h3

h∗3
− h1

h∗1

)
= h1h

∗
1

= (Wtê)1. �

Corollary 4.1. For a triangle t the nodal weights {V1, V2, V3} defined above satisfy V1 + V2 = h3h
∗
3, V2 + V3 =

h1h
∗
1, and V1 + V3 = h2h

∗
2.

Proof. Use identities and calculations similar to the above. �

4.3. The derived divergence stencil

An important feature of the covolume inner product matrix W is that it is diagonal. The dual operators
K∗ and C∗ were derived using W−1. Thus, unlike the mimetic and Raviart-Thomas/Nedelec matrices, the
covolume matrix W yields dual operators which all have local stencils. This has two important consequences.
One is a computational advantage: in solving the systems of equations in which these operators arise, the
inversion of matrices is computationally time-consuming. Secondly, the dual discrete divergence operator has
an interpretation as an actual approximation of the divergence of a vector field over a covolume region.

Recall that the dual divergence operator has the form D∗ = −N−1GTW and that in the covolume method
the nodal weights in the matrix inner product on N are |t′k|. The stencil of the dual divergence operator is
shown in Figure 7.

In our description of the class of schemes that fit into the exact sequence framework, the choice of inner
product determined the dual discrete divergence operator. It is possible to go backwards: choosing a
discrete divergence operator that acts on E0 and results in elements of N0 creates a discrete inner product on
the space E .
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Figure 7. Covolume divergence operator stencil.

Figure 8. General diagonal matrix induced divergence operator stencil.

Any choice of diagonal matrix Q representing a discrete inner product on E creates a dual divergence operator

D∗ = −N−1GTQ that has a local stencil. Similarly, if (D∗û)k := 1
Nk

5∑
i=1

αiûi for some positive set of αis then

the discrete inner product matrix Q on E must be diagonal and satisfy Qii = hiαi. See Figure 8.
One benefit of the local stencil is the ability to analyze the accuracy of the discrete divergence operator. From

Figures 7 and 8 we see that if αi = h′i for i = 1, . . . , 5, then for a constant vector field �u and its projection û,
the dual divergence D∗ satisfies

(D∗û)k =
1
|Nk|

∫
Nk

div �u dA = 0

where Nk = t′k. We refer to an operator that satisfies this property (for any choice of nodal region Nk) as
div-accurate.

This notion immediately raises two questions: for what other choices of {αi}5i=1 is this the case? And what
nodal regions (i.e. what choice of discrete inner product matrix N on N ) can be associated with these αi edge
weights so that the dual discrete divergence is div-accurate? We categorize the αis in the following theorem.
Consider Figure 9.

Theorem 4.3. Given n points in R
2, {�xi}ni=1, and positive scalar values {αi}ni=1, for i = 1, . . . , n let �xi = (xi, yi)

and define �ni = 1
‖�xi‖ (xi, yi) and �τi = 1

‖�xi‖(yi,−xi). Given �u ≡ (c1, c2) define ui = �u · �ni for i = 1, . . . , n. Then
n∑

i=1

αiui = 0 for all constants c1 and c2 if and only if there exists a n-sided polygon P with sides σ′
i perpendicular

to �xi and of length αi for i = 1, . . . , n.
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Figure 9. Theorem 4.1 diagram.

Proof. (⇐=) The vector field �u is constant over the polygon P so that div �u = 0. Therefore

0 =
∫
P

div �udA =
∫

∂P

�u · �n ds =
n∑

i=1

∫
σ′

i

ui ds =
n∑

i=1

αiui.

(=⇒) Since �xi · �τi = 0 for all i it suffices to show that the sides σ′
i := αi�τi create a polygon. In turn, that

reduces to showing that
n∑

i=1

αi�τi = �0.

Let �e = (1, 0) and �f = (0, 1). By the hypotheses
n∑

i=1

αiei = 0 and
n∑

i=1

αifi = 0. Thus:

n∑
i=1

αi�τi =
n∑

i=1

(
αi

yi

‖xi‖
,−αi

xi

‖xi‖

)

=

(
n∑

i=1

αi
yi

‖xi‖
,−

n∑
i=1

αi
xi

‖xi‖

)

=

(
n∑

i=1

αi �e · �ni,−
n∑

i=1

αi
�f · �ni

)
= (0, 0). �

Thus we can only be assured div-accuracy of D∗ = −N−1GTQ (with diagonal matrix Q) if the weights
in Q correspond to the lengths of the sides of a polygon and these sides are perpendicular to the edges of the
mesh. Any other choice of regions will not have accurate divergence stencils. The additional requirement that
the nodal regions cover the entire domain Ωh suggests that the covolume matrix Wt is unique among diagonal
matrices (representing inner products on Et) in yielding a div-accurate dual divergence operator.

5. Conclusion

In the partial differential equations that these methods have been applied to, the choice of inner product does
not affect the existence and uniqueness of solutions to the systems of equations. Thus it is the computability
and convergence analysis that varies.
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The choice of which inner product to choose must mainly depend on the mesh. For Delaunay triangulations,
the benefits of the covolume’s diagonal matrix inner product are clear. For non-Delaunay triangulations, where
the covolume method is not applicable, it is possible that an inner product from the set X may be most suitable
for convergence analysis. For more general meshes, and in particular quadrilateral meshes, the mimetic method
appears most appropriate.

This construction of discrete spaces and discrete operators, and the existence of exact sequences can be ex-
tended to higher order discretizations and higher dimensions. For higher order discretizations in this framework
see [18] and for a differential forms viewpoint of this construction see [3,14].
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