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Abstract. This paper is concerned with the numerical approximation of the solutions of a two-fluid
two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for
easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative
terms that are inherently present in the set of convective equations and that couple the two phases.
In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the
natural phase space, and exactly captures the coupling waves between the two phases. Numerical
evidences are given to corroborate the validity of our approach.
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Introduction

In this paper, we are interested in the numerical approximation of the solutions of a two fluid two pressure
diphasic model. That kind of model has gained interest in the recent years for the modelling and computation
of two phase flows. It was first formulated in Baer and Nunziato [6] and its mathematical properties have been
first addressed in Embid and Baer [18]. This model was subsequently studied in Kapila et al. [27], Glimm
et al. [22], Saurel and Abgrall [35], Gavrilyuk and Saurel [21], Gallouët et al. [20], Coquel et al. [16]. It treats
each phase as a separate fluid meaning that each phase k has its own density ρk, velocity uk and pressure pk

with k = 1, 2. In particular, the velocity and pressure nonequilibria between the phases are not neglected.
In the case of a barotropic flow (the pressure is for each phase a function of the density only), the basic

set of convective equations is composed of the classical partial differential equations governing the mass αkρk

and the momentum αkρkuk. Here αk is the volume fraction of phase k and the two fluids are non-miscible,
which implies α1 + α2 = 1. The coupling between the two phases is made by two nonconservative terms
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pI∂xαk, k = 1, 2 involving the interfacial pressure pI in the momentum equations, whereas αk evolves according
to its own equation. More precisely, it is advected with the interfacial velocity uI . Several choices for uI and
pI can be found in the literature. Here we choose to set

uI = u2, pI = p1(ρ1) (0.1)

following [6,16,21]. This closure was first proposed for modelling a fluid-solid interface in a detonation model,
but it applies also to our case of a liquid-vapor interface provided that one of the phases is dispersed, i.e. its
concentration is small. Other closure laws has been proposed for fluid-fluid models, see for instance [35]. We
refer the reader to Gallouët et al. [20] for a comprehensive study of general closure laws concerning uI and pI .
Relations (0.1) ensure that the void fraction wave is linearly degenerate. Source terms like gravity force and
pressure relaxation will be added in the equations in the numerical part of the paper to simulate typical two
phase problems. The problem of the relaxation of the fluid velocities is not addressed here. We study that
problem in [2].

Importantly, the model under consideration admits systematically five real eigenvalues and is seen to have a
basis of right eigenvectors, at least in the context of subsonic flows. From a mathematical viewpoint, this flow
regime expresses that some of the eigenvalues do not coincide and is completely relevant in the nuclear energy
industry framework which motivates this work. The hyperbolicity property makes the two-fluid two-pressure
approach very attractive in comparison to models using an equilibrium pressure assumption (p = p1 = p2) since
the latter do not necessarily admit real eigenvalues in all situations.

The resolution of the proposed system is certainly not easy, for two main reasons. The first one comes from
the (possibly) strong nonlinearities associated with the pressure laws pk, k = 1, 2. In order to overcome this
difficulty, we propose in this work a numerical scheme which is based on a relaxation approach. The idea is
to approximate at the discrete level the solutions of the system (the so-called equilibrium system) by those
of a suitable extended first order system with singular perturbation (the so-called relaxation system). See for
instance Jin and Xin [26], Chalons and Coquel [12], Coquel et al. [15], Chalons and Coulombel [13]. This
relaxation system has the property of being nonlinear hyperbolic with only linearly degenerate characteristic
fields, which makes the numerical resolution of the equilibrium system easier.

The second difficulty stems from the presence of the nonconservative terms pI∂xαk, k = 1, 2 which implies
that the (equilibrium) system does not admit any equivalent conservation form in general. Of course, these
nonconservative terms vanish in the very particular situation in which αk is locally constant and the struc-
ture becomes the one of two conservative and decoupled two by two Euler systems. In the general case, the
choice (0.1), by ensuring that the void fraction wave is linearly degenerate, allows to give sense to the nonconser-
vative terms. By contrast with nonconservative products appearing in shocks [29,30], nonconservative products
propagated by contact discontinuities do not depend on the underlying viscous phenomena. With this respect,
discrete solutions do not depend on numerical viscosity (Guillemaud [25]). Difficulties may arise but they are
linked with the appearance of resonance phenomena (Andrianov and Warnecke [4], Andrianov [3]...). In this
context, we derive in this work an approximate Riemann solver so as to preserve in the best possible way the
contact discontinuity uI associated with the initial system, and this is achieved by a particular treatment of the
nonconservative products in the relaxation system. We prove that the proposed Riemann solver is conservative
for the mass of each phase and for the total momentum, and that it captures exactly the uI -contact discontinu-
ities associated with the original system. In addition, it is given by fully explicit formulas and is stable in the
L1 sense (i.e. it preserves the natural phase space).

One may find in the literature several quite recent papers devoted to the numerical resolution of two-fluid
two-pressure models and the question of how to discretize the nonconservative terms. Most of them deal with
the non barotropic case. Actually, the literature is large on this subject and we do not claim that the following
discussion is exhaustive. We refer in particular to the numerous works quoted in the references we mention.
A first group of works is due to Saurel and collaborators. Saurel and Abgrall in [35] and Andrianov et al.
in [5] for instance (see also Saurel and Lemetayer [36] for a multidimensional framework) take into account
the nonconservative terms by means of a free streaming physical condition associated with uniform velocity
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and pressure profiles. The discretization technique of [35] is improved by the same authors in [1] in an original
way. It consists in averaging some approximations of the pure phase Euler equations at the microscopic level
instead of, as it is more usual, approximating the averaged multiphase flow equations. Their goal is to account
for the volume fraction variations inside the shock relations in presence of source terms. In Andrianov and
Warnecke [4] and Schwendeman et al. [37], the common objective is to get exact solutions for the Riemann
problem of the model. The approach is inverse in [4] in the sense that the initial left and right states are obtained
as function of the intermediate states of the solution. On the contrary, a direct iterative approach is used in [37]
leading to exact solutions of the Riemann problem for any initial left and right states. Another direct approach
to construct theoretical solutions is proposed in Castro and Toro [11]. In this work the authors propose to
solve the Riemann problem approximately assuming that all the nonlinear characteristic fields are associated
with rarefaction waves. Finally, all these (approximate or exact) solutions are used to develop a Godunov-type
method. At last, other finite volumes methods have been used. For instance in Gallouët et al. [20] (see also
Guillemaud [25]), the approximation of the convective terms of the system is based on the Rusanov scheme
(Rusanov [34]) and the so-called VFRoe-ncv scheme (Buffard et al. [10]), these strategies being adapted to the
nonconservative framework. In Munkejord [32] and Karni et al. [28], the author use Roe-type schemes.

The outline of the paper is as follows. Section 1 introduces some notations, gives the governing equations
of the two-fluid two-pressure model and states its basic properties. Section 2 characterizes the admissible con-
tact discontinuities associated with the coupling wave uI . The next two sections are devoted to the relaxation
approximation of the two-fluid two-pressure model and follow the same lines. Section 3 thus describes the relax-
ation system and gives its basic properties whereas Section 4 proposes a characterization of the corresponding
admissible uI-contact discontinuities. At last, Section 5 describes the approximate Riemann solver and the
relaxation scheme, and Section 6 is devoted to numerical experiments.

To conclude this introduction, let us mention that this work falls within the scope of a joint research program
on the coupling of multiphase flow models between CEA-Saclay and Laboratoire Jacques-Louis Lions5. In the
short term, the objective of the working group is to couple a two-fluid two-pressure model and a drift-flux
model.

1. Governing equations

In one space dimension, the convective part of the model under consideration in this paper reads:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tα1 + uI∂xα1 = 0,
∂tα1ρ1 + ∂x(α1ρ1u1) = 0,
∂tα1ρ1u1 + ∂x(α1ρ1u

2
1 + α1p1(ρ1)) − pI∂xα1 = 0, t > 0, x ∈ R,

∂tα2ρ2 + ∂x(α2ρ2u2) = 0,
∂tα2ρ2u2 + ∂x(α2ρ2u

2
2 + α2p2(ρ2)) + pI∂xα1 = 0.

(1.1)

It takes the following condensed form:

∂tu + ∂xf(u) + c(u)∂xu = 0, t > 0, x ∈ R, (1.2)

where t is the time and x is the space variable. The unknown vector u is defined by

u =

⎛
⎝ α1

u1

u2

⎞
⎠ , with u1 =

(
α1ρ1

α1ρ1u1

)
, u2 =

(
α2ρ2

α2ρ2u2

)
,

and α1, ρ1 and u1 (respectively α2 = 1 − α1, ρ2 and u2) represent the volume fraction, the density and the
velocity of the phase 1 (resp. of the phase 2). This vector is expected to belong to the following natural

5See http://www.ann.jussieu.fr/groupes/cea/.

http://www.ann.jussieu.fr/groupes/cea/.
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phase space

Ω = {(α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2)t ∈ R
5 such that 0 < αk < 1 and ρk > 0 for k = 1, 2} ·

The functions f : Ω → R
5 and c : Ω → R

5×5 are such that

f(u) =

⎛
⎜⎜⎜⎜⎝

0
α1ρ1u1

α1ρ1u
2
1 + α1p1(ρ1)
α2ρ2u2

α2ρ2u
2
2 + α2p2(ρ2)

⎞
⎟⎟⎟⎟⎠ , c(u)∂xu =

⎛
⎜⎜⎜⎜⎝

uI∂xα1

0
−pI∂xα1

0
pI∂xα1

⎞
⎟⎟⎟⎟⎠ (1.3)

where the pressure laws pk, k = 1, 2 are given smooth functions such that pk(ρk) > 0, p′k(ρk) > 0, p′′k(ρk) +
2
ρk
p′k(ρk) > 0, limρk→0 pk(ρk) = 0 and limρk→∞ pk(ρk) = +∞. The proposed interfacial velocity uI and

pressure pI are
uI = u2, pI = p1(ρ1), (1.4)

which corresponds to a particular choice of the closures proposed for instance in [20,25].
Since the fluid is adiabatic, the internal energies ek, are defined by

dek(ρk, sk) = −pk(ρk)
ρ2

k

dρk + Tdsk = −pk(ρk)
ρ2

k

dρk,

which gives

e′k(ρk) =
pk(ρk)
ρ2

k

· (1.5)

The total energies Ek and the enthalpies hk of each phase are given by the following relations

Ek(uk) =
1
2
u2

k + ek(ρk), hk(ρk) = ek(ρk) +
pk(ρk)
ρk

, k = 1, 2. (1.6)

The sound speeds are given by

ck =
√
p′k(ρk), k = 1, 2.

The following proposition holds.

Proposition 1.1. For all vector u in the phase space Ω, system (1.2) admits the following five real eigenvalues

λ0(u) = u2,
λ1(u) = u1 − c1, λ2(u) = u1 + c1,
λ3(u) = u2 − c2, λ4(u) = u2 + c2,

(1.7)

and is hyperbolic on Ω (the corresponding right eigenvectors span R
5) as soon as u2 �= u1 ± c1. Moreover,

the characteristic fields associated with {λi}i=1,...,4 are genuinely nonlinear, whereas the characteristic field
associated with λ0 is linearly degenerate.

Proof. This result has already been stated in [32] in the barotropic case (in the case of the full system, see Baer
and Nunziato [6]). For the sake of completeness, we briefly recall the main ingredients of its proof.

First, classical manipulations on system (1.2) show that it can be recast in the following quasi-linear form

∂tu + A(u)∂xu = 0, (1.8)
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where the coefficient matrix A(u) is given by

A(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u2 0 0 0 0
0 0 1 0 0
χ1 c21 − u2

1 2u1 0 0
0 0 0 0 1

−χ2 0 0 c22 − u2
2 2u2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (1.9)

with
χk = (pk − pI) − ρkc

2
k, k = 1, 2.

Recall that uI = u2 in this paper. The eigenvalues (1.7) are easily obtained using a block decomposition of
matrix (1.9).

Then, provided that u2 �= u1 ± c1 (that is λ0 �= {λi}i=1,...,4), the right eigenvector matrix R is found to be
invertible and given by

R(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
χ1

(λ1 − λ0)(λ2 − λ0)
1 1 0 0

χ1u2

(λ1 − λ0)(λ2 − λ0)
λ1 λ2 0 0

− χ2

(λ3 − λ0)(λ4 − λ0)
0 0 1 1

− χ2u2

(λ3 − λ0)(λ4 − λ0)
0 0 λ3 λ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

At last, easy calculations give the sort of the characteristic fields associated with {λi}i=1,...,4 (genuinely nonlin-
ear) and λ0 (linearly degenerate).

We note that system (1.2) is not always hyperbolic. When u2 = u1 ± c1, the coefficient matrix A(u) is no
longer diagonalizable and the system becomes resonant. This is known to generate important difficulties [23,31]
but such a situation will not be addressed in the present work. In fact, we are mainly interested in subsonic
flows so that the restriction u2 �= u1 ± c1 will be always satisfied in practice.

Note also that the characteristic field associated with the wave λ0 between the two phases is linearly degen-
erate. This is a consequence of the particular choice (1.4) (see again [20,25] for more details). �

2. Jump relations across a contact discontinuity

Solving the Riemann problem associated with (1.2) for the following initial data

u0(x) =
{

u− if x < 0,
u+ if x > 0 (2.1)

turns out to be a difficult question. The main point in this study is the large number of characteristic speeds
(five, see the previous proposition) and the possible occurrence of resonance. However, the general structure of a
Riemann solution to (1.2)–(2.1) is made of shock and rarefaction waves associated with eigenvalues {λi}i=1,...,4

and a contact discontinuity associated with λ0, see Figure 1 in the case of subsonic flows (uk−ck � u2 � uk+ck,
k = 1, 2). From the first equation in system (1.2), the void fractions α1 and α2 are constant on the left and
on the right of the latter λ0-discontinuity and in these regions, system (1.2) consists of two independent Euler
systems for the two phases 1 and 2. That is why the λ0-discontinuity is often called the coupling wave between
phases 1 and 2. Note that due to the nonlinearities of the pressure laws pk = pk(ρk), k = 1, 2, the intermediate
states which separate the five simple waves in such a Riemann solution are difficult to determine, at least
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x

t

uk − ck

u2

uk + ck

Figure 1. General structure in the subsonic regime of the Riemann solution associated with (1.2).

in the general situation α1− �= α1+ (if α1− = α1+, the intermediate states follow from classical considerations
on the two independent Euler systems for the two phases, see for instance [24]).

Therefore, instead of trying to solve the full Riemann problem (1.2)–(2.1), in this section we focus our atten-
tion on particular solutions made of only two constant states (u− and u+) separated by a contact discontinuity
propagating with characteristic speed λ0 = u2− = u2+, namely the contact or coupling wave. Recall that this
characteristic speed is related to a linearly degenerate field with the consequence that the non conservative
product u2∂xα1 is well defined in (1.3) (u2 remains continuous even if α1 presents a discontinuity, see also [20]).
Then, in order to characterize such (admissible) solutions, four independent jump relations, or equivalently four
independent λ0-Riemann invariants, have to be found. We first remark that system (1.2) is clearly made of
two conservation laws, the other partial differential equations being non conservative. At this stage, no more
than two Rankine-Hugoniot jump relations can thus be obtained. The next statement provides two additional
conservation laws satisfied by the smooth solutions of (1.2), eventually leading to a full set of jump relations.

Proposition 2.1. Smooth solutions of (1.2) obey the following two conservation laws

⎧⎨
⎩

∂t(α1ρ1u1 + α2ρ2u2) + ∂x(α1ρ1u
2
1 + α2ρ2u

2
2 + α1p1(ρ1) + α2p2(ρ2)) = 0,

∂tu1 + ∂x

(
1
2
u2

1 + h1(ρ1)
)

= 0.

Proof. The proposed equations follow from classical manipulations on system (1.2) and definitions (1.5), (1.6).
These are left to the reader. �

The above relations hold true in the weak sense for solutions presenting contact discontinuities (see for
instance [24]). We thus use the additional Rankine-Hugoniot jump relations provided by these two conservation
laws to establish the following theorem.

Definition 2.2. Let u− and u+ be two constant states in Ω. These states can be joined by an admissible
λ0-contact discontinuity if and only if the following jump relations hold:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u2 := u2− = u2+,

m := α1−ρ1−(u1− − u2) = α1+ρ1+(u1+ − u2),
mu1− + α1−p1(ρ1−) + α2−p2(ρ2−) = mu1+ + α1+p1(ρ1+) + α2+p2(ρ2+),

m2

2α2
1−ρ

2
1−

+ h1(ρ1−) =
m2

2α2
1+ρ

2
1+

+ h1(ρ1+).

(2.2)

In such a situation, the speed of propagation of the discontinuity is given by u2.
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Now it is a natural question to wonder whether being given a state u− ∈ Ω there exists a state u ∈ Ω such
that (2.2) holds with u+ = u. Actually, for the forthcoming developments, we prefer to answer to this question
in a slightly different way, namely we show that being given u− ∈ Ω and α1+ ∈ (0, 1), it is possible to find a
state u = (α1,u1,u2)t ∈ Ω such that α1 = α1+ and (2.2) holds with u+ = u.

First, we define the subsonic set

Ssub(u−, α1) =
{
ρ1 > 0 such that

( m

α1ρ1c1(ρ1)

)2

< 1
}

·

In order to justify the terminology subsonic, let us underline that for all ρ1 > 0 the quantity

( m

α1ρ1c1(ρ1)

)

can actually be seen as the ratio of the velocity of fluid 1 in the frame of the linearly degenerate wave of speed
u2: u1 − u2 (by definition m = α1ρ1(u1 − u2)) and the sound speed c1(ρ1). We are now in position to prove the
following result.

Theorem 2.3. Let u− be a constant state in Ω and α1+ a constant void fraction in (0, 1). Assume that u−
is a subsonic state in the sense that ρ1− belongs to Ssub(u−, α1+). Assume moreover that the pressure law p1

fulfills ⎧⎪⎨
⎪⎩

p1(ρ1) > 0, p′1(ρ1) > 0, p′′1 (ρ1) > 0 for all ρ1 > 0,
limρ1→0 p1(ρ1) = limρ1→0 p

′
1(ρ1) = 0,

limρ1→∞ p1(ρ1) = limρ1→∞ p′1(ρ1) = +∞.

Then, provided that |α1+ − α1−| is sufficiently small, there exists a unique state u+ = u+(u−, α1+) ∈ Ω such
that ρ1+ ∈ Ssub(u−, α1+) and the jump relations (2.2) are satisfied.

The proof of this result is classical and is given, for instance, in [19].
It is important to notice that the set of equations (2.2) is nonlinear, and subject to a proximity assumption

on the void fractions to be well posed. The next section shows how to deal easily with the nonlinearities by
introducing a relaxation approximation of (1.2).

3. Relaxation approximation

The aim of this section is to propose a suitable relaxation approximation of system (1.2). For that, we
start from the fact that the nonlinearities of (2.2) are closely related to the nonlinearities of the pressure laws
ρk �→ pk(ρk). In the spirit of [12,15,26], we then consider an enlarged system with two additional scalar unknown
quantities associated with two linearizations Πk of the pressure laws pk. The point is to modify the pressure
laws in the convective part of (1.2) in order to get a quasilinear enlarged system, and to move their main
nonlinearities in a stiff relaxation term. This relaxation procedure is based on the idea that solutions of the
original system (1.2) are formally recovered as the limit of the solutions of the proposed enlarged system with
relaxation source term in the regime of an infinite relaxation coefficient (see for instance [13]).

As a relaxation approximation of (1.2), we propose the following system of balance laws:

∂tvε + ∂xgε(vε) + dε(vε)∂xvε =
1
ε
Rε(vε), t > 0, x ∈ R, (3.1)
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where, by omitting the superscripts ε to ease notations, the unknown vector reads

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

u1

u2

α1ρ1T1

α2ρ2T2

⎞
⎟⎟⎟⎟⎟⎟⎠

, with u1 =

(
α1ρ1

α1ρ1u1

)
, u2 =

(
α2ρ2

α2ρ2u2

)
,

whereas the functions g and d are such that

g(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
α1ρ1u1

α1ρ1u
2
1 + α1Π1

α2ρ2u2

α2ρ2u
2
2 + α2Π2

α1ρ1T1u1

α2ρ2T2u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, d(v)∂xv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uI∂xα1

0
−ΠI∂xα1

0
ΠI∂xα1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2)

The relaxation term R(v) is defined by

R(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

α1ρ1(τ1 − T1)
α2ρ2(τ2 − T2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

Here, T1 and Π1 (respectively T2 and Π2) can be understood as relaxations associated with the specific volume
τ1 = 1/ρ1 (respectively τ2 = 1/ρ2) and the pressure p1 (respectively p2), and we set

Πk = pk(1/Tk) + a2
k(Tk − τk), k = 1, 2,

for some constants a1 and a2 precised just below. These relaxation quantities Tk and Πk are expected to
converge towards the corresponding equilibrium ones τk and pk in the regime of an infinite relaxation rate λ
(λ → ∞). However, in order to prevent the relaxation system (3.1) from instabilities in the regime of large
values of λ (λ� 1), the free parameters ak must be such that

ak > ρkck(ρk), k = 1, 2, (3.4)

for all the ρk under consideration. This condition is the so-called Whitham condition (see for instance [8,12] and
the references therein). We also refer the reader to [7,9] for another relaxation approximation of system (1.2).

Of course, the proposed interfacial velocity uI and pressure ΠI are naturally defined when setting

uI = u2, ΠI = Π1,

in perfect analogy with the choice (1.4) for system (1.2).
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The main interest of this relaxation system lies in the linear degeneracy property of its characteristic fields,
unlike system (1.2), see Proposition 1.1. More precisely, the following statement holds.

Proposition 3.1. For all vector v in the phase space Ωr defined by

Ωr = {(α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2, α1ρ1T1, α2ρ2T2)t ∈ R
7 such that

0 < αk < 1 and ρk > 0 and Tk > 0 for k = 1, 2},

the first order system extracted from (3.1), namely

∂tv + ∂xg(v) + d(v)∂xv = 0, (3.5)

admits the following six real eigenvalues

λr
0(v) = u2,

λr
1(v) = u1 − a1τ1, λr

2(v) = u1 + a1τ1,

λr
3(v) = u2 − a2τ2, λr

4(v) = u2 + a2τ2,

λr
5(v) = u1,

(3.6)

and is hyperbolic (the corresponding right eigenvectors span R
7) over Ωr as soon as u2 �= u1 ± a1τ1. Moreover,

all the characteristic fields associated with {λr
i }i=1,...,5 are linearly degenerate.

Proof. We only propose a sketch of the proof of this result which follows from cumbersome but not difficult
calculations.

First, and unlike Proposition 1.1, we found more pleasant to recast the first order system extracted from (3.1)
when considering the new vector w defined by w = (α1, ρ1, u1, ρ2, u2,Π1,Π2) as a main unknown. We then
arrive at

∂tw + B(w)∂xw = 0,

with

B(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2 0 0 0 0 0 0
ρ1u1 − ρ1u2

α1
u1 ρ1 0 0 0 0

Π1 − ΠI

α1ρ1
0 u1 0 0

1
ρ1

0

ρ2u2 − ρ2u2

α2
0 0 u2 ρ2 0 0

Π2 − ΠI

α2ρ2
0 0 0 u2 0

1
ρ2

a2
1(u1 − u2)
α1ρ1

0
a2
1

ρ1
0 0 u1 0

a2
2(u2 − u2)
α2ρ2

0 0 0
a2
2

ρ2
0 u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Easy calculations allow to obtain the characteristic polynomial P(μ) of this square matrix:

P(μ) = (u1 − μ)(u2 − μ)2
(
(u2 − μ)2 − a2

2

ρ2
2

)(
(u1 − μ)2 − a2

1

ρ2
1

)
,
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x

t

uk − akτk

u1 u2

uk + akτk

Figure 2. General structure in the subsonic regime of the Riemann solution associated with (3.5).

and then the expected eigenvalues λr
k, k = 0, ..., 5 in (3.6). Note that the multiplicity of λr

0 is now two. Provided
that u2 �= λr

k, k = 1, 2 the following matrix of the associated right eigenvectors is well-defined and invertible

R(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

− ρ1(λr
5 − λ0

k)2

α1(λr
0 − λr

1)(λ
r
0 − λr

2)
0 − 1

a1τ2
1

1
a1τ2

1

0 0 1

a2
1τ

2
1 (λr

5 − λ0
k)

α1(λr
0 − λr

1)(λ
r
0 − λr

2)
0 1 1 0 0 0

0 1 0 0 − 1
a2τ2

2

1
a2τ2

2

0

0 0 0 0 1 1 0

− a2
1(λr

5 − λ0
k)2

α1ρ1(λr
0 − λr

1)(λ
r
0 − λr

2)
0 −a1 a1 0 0 0

Π1 − Π2

α2
0 0 0 −a2 a2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is then a classical matter to see that all the characteristic fields are in this case linearly degenerate. �

We note that the convective system associated with (3.1) admits one more characteristic speed u1 in com-
parison with (1.2) (see Prop. 1.1). This one is clearly associated with the proposed equation for T1. In addition,
the characteristic speed u2 is of course still present but now gets a second order multiplicity due to the equation
for T2. The other speeds λr

k, k = 1, ..., 4 are nothing but linearizations of λk, k = 1, ..., 4 (a1 and a2 have the
dimension of two Lagrangian sound speeds). See Figure 2.

4. Jump relations across a contact discontinuity for the relaxation system

In spite of the fact that all the characteristic fields associated with (3.5) are linearly degenerate, it turns
out that the corresponding Riemann problem is rather involved, as shown in [19]. Generally speaking, the
consequence is that the Riemann solution associated with (3.5) is not given by an explicit formula.

As in Section 2, our objective here is then to characterize the admissible contact discontinuities associated
with λ0 = u2 and separating two constant states v− and v+ in Ωr. We follow the same procedure. Namely, we
first complete the four conservation laws already present in (3.1) by deriving two additional partial differential
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equations satisfied by the smooth solutions of system (3.1). Then, by means of the usual Rankine-Hugoniot
jump relations, we propose a full set of conditions for such a solution to be admissible.

Proposition 4.1. Smooth solutions of (3.5) obey the following two partial differential equations

⎧⎨
⎩

∂t(α1ρ1u1 + α2ρ2u2) + ∂x(α1ρ1u
2
1 + α2ρ2u

2
2 + α1Π1 + α2Π2) = 0,

∂tu1 + ∂x
u2

1 − a2
1τ

2
1

2
+ τ1∂xI1 = 0,

where we have set I1 = p1(1/T1) + a2
1T1.

Proof. The proposed equations follow from classical manipulations on system (3.5). �

We first notice that among these two additional equations, only one is under conservation form. However,
we will see in the following statement that T1 (and thus I1) is seen to be constant across the contact associated
with λ0 (in the absence of resonance with u1). Therefore the non conservative product τ1∂xI1 cancels and the
second equation actually provides an additional conservation law. We then easily get the following definition,
comparable with Definition 2.2.

Definition 4.2. Let v− and v+ be two constant states in Ωr. These states can be joined by an admissible λ0

contact discontinuity if and only if the following jump relations hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 := u2− = u2+,

m := α1−ρ1−(u1− − u2) = α1+ρ1+(u1+ − u2),
mu1− + α1−Π1− + α2−Π2− = mu1+ + α1+Π1+ + α2+Π2+,

mT1− = mT1+,

m2

2α2
1−ρ

2
1−

− a2
1

τ2
1−
2

=
m2

2α2
1+ρ

2
1+

− a2
1

τ2
1+

2
·

(4.1)

In such a situation, the speed of propagation of the discontinuity is given by u2.

It is worth noticing that the first two equations in (4.1) and (2.2) are identical, while the third are similar
in the sense that Π1 and Π2 play the part of linearized pressure laws. On the contrary, and thanks to the
proposed relaxation approximation, the last equation in (4.1) is significantly simplified (i.e. less non linear) in
comparison to the last equation in (2.2). We seek now to obtain a result analogous to Theorem 2.3.

Theorem 4.3. Let v− be a constant state in Ωr and α1+ a constant void fraction in (0, 1). Assume that v− is
a subsonic state in the sense that ( m

α1+a1

)2

< 1. (4.2)

Then, provided that |α1+ −α1−| is sufficiently small, there exists a unique subsonic point ρ1+ such that the last
equation in (4.1) holds true. It is explicitly given by

ρ1+ =

√√√√ m
α1+a1

− 1
m

α1−a1
− 1

ρ1−. (4.3)

Moreover, if we get for any given T2+

−m(u1+ − u1−) + (α1−Π1− − α1+Π1+) + α2−Π2− − α2+I2+ < 0, (4.4)
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with I2 = p2(1/T2)+a2T2, and u1+ defined by the second equation in (4.1), then we can define uniquely ρ2+ > 0
such that the third equation in (4.1) holds true. It is explicitly given by

τ2+ =
1
ρ2+

= −−m(u1+ − u1−) + (α1−Π1− − α1+Π1+) + α2−Π2− − α2+I2+
α2+a2

2

(4.5)

and we thus can find a unique state v+ = v+(v−, α1+) ∈ Ωr so that the jump relations (4.1) are satisfied.

Proof. This theorem is not difficult to establish thanks to the linearized formulas (4.1). First of all, the
state v− is assumed to be subsonic in the sense of inequality (4.2), which is equivalent to

−1 <
m

α1+a1
< 1.

Provided that |α1+ − α1−| is sufficiently small, we also have

−1 <
m

α1−a1
< 1.

Then, it is easily checked that the unique solution ρ1+ > 0 of the last equation in (4.1) is given by the well-
defined formula (4.3). Defining u2 = u2+ = u2− and u1+ = u2 +m/α1+ρ1+ according to the first two equations
in (4.1), it is easy to see that under (4.4) the unique solution ρ2+ > 0 of the third equation in (4.1) is explicitly
given by (4.5). �

Remark 4.4. In the context of the proposed relaxation approximation, ρ2+ is now explicitly given.

5. Numerical approximation

In this section, we propose to derive a numerical scheme for approximating the weak solutions of the following
initial value problem associated with system (1.2):

{
∂tu + ∂xf(u) + c(u)∂xu = 0, t > 0, x ∈ R,

u(x, 0) = u0(x).
(5.1)

Of course, the proposed relaxation system (3.1) is going to be used. Let us first introduce some notations. In
what follows, Δt and Δx are respectively the time and space steps that we assume to be constant for simplicity.
We also set ν = Δt

Δx and define both the mesh interfaces xj+1/2 = jΔx for j ∈ Z, and the intermediate times
tn = nΔt for n ∈ N. As usual in the context of finite volume methods, the approximate solution x �→ uν(x, tn) is
assumed to be constant at each time tn in cells Cj = [xj−1/2, xj+1/2[ and the corresponding values are called un

j .
Therefore, we have

uν(x, tn) = un
j for all x ∈ Cj, j ∈ Z, n ∈ N.

At time t = 0, we use the initial condition u0 provided in (5.1) to define the sequence (u0
j)j as follows:

u0
j =

1
Δx

∫ xj+1/2

xj−1/2

u0(x)dx, ∀j ∈ Z.

5.1. The relaxation method

Let us now briefly describe the two-step splitting technique associated with the relaxation system (3.1) in
order to define uν(., tn+1) from uν(., tn). Such a strategy is very classical in the context of relaxation methods
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and proposes to first treat the convective part of (3.1), and then to take into account the relaxation source term.
We first introduce the piecewise constant approximate solution x �→ vν(x, tn) at each time tn of system (3.1)

vn
j =

⎛
⎜⎝

un
j

(α1ρ1T1)n
j

(α2ρ2T2)n
j

⎞
⎟⎠ .

At time t = 0, function x �→ vν(x, t0) is set at equilibrium, which means

(α1ρ1T1)0j = (α1)0j and (α2ρ2T2)0j = (α2)0j .

The two steps are defined as follows.

Step 1. Evolution in time (tn → tn+1−)
In this first step, the following Cauchy problem is numerically solved for small times t ∈ [0,Δt]:

{
∂tv + ∂xg(v) + d(v)∂xv = 0, x ∈ R,

v(x, 0) = vν(x, tn).
(5.2)

Since x �→ vν(x, tn) is piecewise constant, the exact solution of (5.2) is theoretically obtained by gluing together
the solutions of the Riemann problems set at each interface xj+1/2 provided that Δt is such that

Δt
Δx

max
v

{|λr
i (v)|, i = 0, ..., 5} ≤ 1

2
, (5.3)

for all the v under consideration. More precisely

vν(x, t) = vr

(
x− xj+1/2

t
;vn

j ,v
n
j+1

)
for all (x, t) ∈ [xj , xj+1] × [0,Δt], (5.4)

where (x, t) �→ vr(x
t ;vL,vR) denotes the exact self-similar solution of the Riemann problem

⎧⎪⎨
⎪⎩

∂tv + ∂xg(v) + d(v)∂xv = 0, x ∈ R, t ∈ R
+,�

v(x, 0) =

{
vL if x < 0,
vR if x > 0,

(5.5)

for vL and vR given in the phase space Ωr.
Note that these exact Riemann solutions are difficult to calculate as already explained at the beginning of

Section 4. Therefore some approximate Riemann solutions (x, t) �→ ṽr(x
t ;vL,vR) of (5.5) are expected to be

used in practice, giving rise to a natural approximate solution (x, t) �→ ṽν(x, t) of (5.2). This issue is going to
be discussed in detail in the next subsection.

In order to define a piecewise constant approximate solution on each cell Cj at time tn+1−, we then propose
the following classical averaging procedure of x �→ ṽν(x,Δt):

vn+1−
j =

⎛
⎜⎝

un+1−
j

(α1ρ1T1)n+1−
j

(α2ρ2T2)n+1−
j

⎞
⎟⎠ =

1
Δx

∫ xj+1/2

xj−1/2

ṽν(x,Δt)dx, j ∈ Z. (5.6)
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Step 2. Relaxation (tn+1− → tn+1)
In this second step, we propose to solve at time tn + Δt the ordinary differential equations

∂tvλ = λR(vλ), x ∈ R, (5.7)

in the asymptotic regime λ → ∞. As initial condition, we take the function x �→ vν(x, tn+1−) obtained at the
end of the first step and defined by

vν(x, tn+1−) = vn+1−
j for all x ∈ Cj , j ∈ Z.

Using the definition (3.3) of the relaxation source term R, this clearly amounts to set

vn+1
j =

⎛
⎜⎝

un+1
j

(α1ρ1T1)n+1
j

(α2ρ2T2)n+1
j

⎞
⎟⎠ ,

with un+1
j = un+1−

j and (Tk)n+1
j = (τk)n+1

j i.e.

(α1ρ1T1)n+1
j = (α1)n+1−

j , (α2ρ2T2)n+1
j = (α2)n+1−

j .

This completes the description of the two-step relaxation method.

5.2. The approximate Riemann solution (x, t) �→ ṽr(x
t
; vL, vR)

Our objective in this section is to detail the Riemann solver (x, t) �→ ṽr(x
t ;vL,vR) associated with (5.5) for

any given vL and vR in the phase space Ωr, and implicitly used in the update formula (5.6). According to the
previous subsection, the initial states vL and vR are assumed to be at equilibrium, i.e. such that

vL,R =

⎛
⎜⎝

uL,R

(α1ρ1T1)L,R

(α2ρ2T2)L,R

⎞
⎟⎠ =

⎛
⎜⎝

uL,R

α1L,R

α2L,R

⎞
⎟⎠ , (5.8)

with uL and uR in Ω.
As already discussed in Section 4, the exact Riemann solution to (5.5) is not explicitly known given two

different void fractions α1L and α1R. To lessen computational costs in the numerical procedure, we then decide
not to compute it exactly but to use a suitable approximate Riemann solution. In fact, the proposed approximate
Riemann solver turns out to be an exact Riemann solver but associated with a simpler system.

Let us briefly discuss the derivation of such a system. We have observed in the previous paragraph that (5.5)
is easy to deal with when α1L = α1R. The reason is that in this very particular case, the non conservative
product ΠI∂xα1 is known a priori (is zero in fact) and, in some sense, no longer enters the resolution of the
Riemann problem. Recall that this nonconservative product acts on the contact only, while its mass 〈ΠI∂xα1〉
represents (to within a sign) the jump of α2Π2 between the right and left states of the discontinuity6. Indeed,
if u∗2 denotes the speed of propagation of the contact, the Rankine-Hugoniot jump relations applied to the fifth
equation in (3.1) (with λ = 0) give

−u∗2[α2ρ2u2] + [α2ρ2u
2
2 + α2Π2] + 〈ΠI∂xα1〉 = 0,

that is (recall that u2 is continuous across the contact and equals u∗2)

〈ΠI∂xα1〉 = −[α2Π2].

6The jump of a quantity X between the right and left states of a discontinuity is noted [X] in the following.
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The value [α2Π2] of this jump depends on the left and right initial states vL and vR but note that by the
equilibrium property (5.8), it can also be understood as a given function of uL and uR. We thus have:

ΠI∂xα1 = −[α2Π2](uL,uR)δx−u∗
2t.

Following the same idea, we propose not to find the exact value [α2Π2](uL,uR), i.e. not to consider it as an
unknown, but to guess it a priori in order to facilitate the resolution of the Riemann problem. In other words,
we replace the actual value [α2Π2](uL,uR) with an estimation [α2Π2](uL,uR) of the jump of α2Π2 across
the contact. This degree of freedom may be put in touch with the relative flexibility in the discretization of
nonconservative products associated with linearly degenerate characteristic fields (see for instance [25]).

We are thus led to introduce the following system:

∂tṽ + ∂xg(ṽ) = −d̃(ṽ)∂xṽ, t > 0, x ∈ R, (5.9)

with

d̃(ṽ)∂xṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uI∂xα1

0

+[α2Π2](uL,uR)δx−u∗
2t

0

−[α2Π2](uL,uR)δx−u∗
2t

−m(T1R − T1L)δx−u∗
2t

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The vectors ṽ and g are kept unchanged, namely

ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

u1

u2

α1ρ1T1

α2ρ2T2

⎞
⎟⎟⎟⎟⎟⎟⎠
, g(ṽ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
α1ρ1u1

α1ρ1u
2
1 + α1Π1

α2ρ2u2

α2ρ2u
2
2 + α2Π2

α1ρ1T1u1

α2ρ2T2u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

On the contrary, we remark from the sixth equation in (5.9) that α1ρ1T1 no longer evolves according to the
original conservation law

∂tα1ρ1T1 + ∂xα1ρ1T1u1 = 0
across the contact, which would mean m[T1] = 0 using the notations of Definition 4.2. If the relative mass flux
m �= 0, this would imply the continuity of T1 ([T1] = 0). Instead, we now impose

∂tα1ρ1T1 + ∂xα1ρ1T1u1 = m(T1R − T1L)δx−u∗
2t.

We thus have [T1] = (T1R − T1L) across the contact. The reason of such a modification is motivated by the
validity of the accuracy property stated in Proposition 5.6 and Theorem 5.8 below. Additional explanations
will be given in Remark 5.7 (Sect. 5.3). Another objective of this term is to make trivial the λr

5-discontinuity
in the resolution of the Riemann problem (see Thm. 5.4 below). Recall indeed that the eigenvalue λr

5 = u1 is
not present in the equilibrium system (1.2) (see Prop. 1.1).

Remark 5.1. The eigenvalues of system (5.9) are the same than the ones of system (3.5). Moreover, all its
characteristic fields are linearly degenerate.
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On the λ0-contact discontinuity, the first two relations in (4.1) still hold7:

u2 := u2− = u2+,

m := α1−ρ1−(u1− − u2) = α1+ρ1+(u1+ − u2).

Therefore, the parameter m is well defined in d̃(ṽ).

For this section to be completed, it remains now to give both the definition of [α2Π2](uL,uR) and the
Riemann solution associated with (5.9). This is the objective of the next two paragraphs.

Estimation of [α2Π2](uL,uR) across the contact. This part is devoted to the definition of [α2Π2](uL,uR).
Recall that this quantity aims at providing a relevant approximation of the actual jump [α2Π2](uL,uR) across
the contact in the solution of (5.5). For the sake of accuracy, we would like this approximate value to be exact
when uL and uR can actually be joined by an admissible contact, i.e. when u− = uL and u+ = uR are such
that jump relations (2.2) associated with the equilibrium system (1.2) are satisfied.

With this in mind, we first propose to define from uL and uR two reconstructed states uL and uR such that
uL and uR on the one hand and uL and uR on the other hand can be joined by an admissible contact. In other
words, and using the proposed notation in Theorem 2.3, we set

uL = u+(uR, α1L) and uR = u+(uL, α1R). (5.10)

At this stage, these two admissible contact discontinuities provide us with two possible choices of [α2Π2](uL,uR),
namely [α2Π2](uL,uR) = (α2Π2)(uR)−(α2Π2)(uL) and [α2Π2](uL,uR) = (α2Π2)(uR)−(α2Π2)(uL). Of course,
we note that if uL and uR are joined by an admissible contact, we have uL = uL and uR = uR so that both
possibilities coincide with the exact jump [α2Π2](uL,uR). In the general case, we propose the following natural
choice

[α2Π2](uL,uR) =

{
(α2Π2)(uR) − (α2Π2)(uL) if d(uR,uR) ≤ d(uL,uL),
(α2Π2)(uR) − (α2Π2)(uL) if d(uR,uR) > d(uL,uL),

where d(., .) denotes the Euclidean distance function. Actually this choice criterion doesn’t seem to play an
important role: in the numerical tests we performed, no difference can be spotted if one estimate is preferred
to the other (see Fig. 9).

Remark 5.2. In this section α1L �= α1R is assumed. It is however worth noticing from a continuity point of
view that if α1L = α1R we have by definition uL = uR and uR = uL, and then [α2Π2](uL,uR) = 0 as expected.

The Riemann solution (x, t) �→ ṽr(x
t ;vL,vR). We now give the Riemann solution (x, t) �→ ṽr(x

t ;vL,vR) of

⎧⎪⎨
⎪⎩

∂tṽ + ∂xg(ṽ) = −d̃(ṽ)∂xṽ, x ∈ R, t ∈ R
+,�

v(x, 0) =

{
vL if x < 0,
vR if x > 0,

(5.11)

with vL and vR in the phase space Ωr.
Before stating the corresponding theorem, let us briefly discuss this issue and more precisely the proposed ad-

missibility criterion for defining the contact discontinuities. Recall that, by Definition 4.2 any admissible contact
discontinuity of the original relaxation system (3.5) (with λ = 0) should satisfy the five jump relations (4.1). We
now deal with the new system (5.9) that proposes to impose two relations across these discontinuities, namely
the jumps of T1 and α2Π2 according to

m[T1] = m(T1R − T1L) and [α2Π2] = [α2Π2](uL,uR).

7The subscripts − and + refer to the states on each side of the discontinuity.
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These relations modify the definition of an admissible contact (4.1). We recall that the first two equations
in (4.1) still hold. We suggest to keep on imposing the conservation of momentum and then we define:

Definition 5.3. A λ0 contact discontinuity of the modified relaxation system (5.9), separating two constant
states v− and v+ such that α1− �= α1+ and propagating with speed u2, is said to be admissible if and only if
the following jump relations hold:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u2 := u2− = u2+,

m := α1−ρ1−(u1− − u2) = α1+ρ1+(u1+ − u2),
mu1− + α1−Π1− + α2−Π2− = mu1+ + α1+Π1+ + α2+Π2+,

m(T1+ − T1−) = m(T1R − T1L),

α2+Π2+ − α2−Π2− = [α2Π2](uL,uR).

(5.12)

Before stating the main result of this part, we need to precise how to chose the two constants a1 and a2.

Theorem 5.4. Let vL and vR be two constant states in Ωr at equilibrium (i.e. (5.8) holds true) and such that
α1L �= α1R. Moreover, let the free parameters ak, k = 1, 2 to be chosen large enough to satisfy the following
inequalities on one hand ⎧⎪⎨

⎪⎩
λr

1(vL) < u1−, u2 < λr
2(vR),

λr
1(vL) < u2, u1+ < λr

2(vR),
λr

3(vL) < u2 < λr
4(vR)

(5.13)

and the following simplified Whitham condition on the other hand

ak(uL,uR) > max(ρkLck(ρkL), ρkRck(ρkR)), k = 1, 2. (5.14)

Then, the self-similar weak solution (x, t) �→ ṽr(x/t,vL,vR) of (5.11) that presents an admissible λ0 contact
discontinuity in the sense of Definition 5.3 is such that

ṽr(x/t,vL,vR) =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

u1

u2

α1ρ1T1

α2ρ2T2

⎞
⎟⎟⎟⎟⎟⎟⎠

(x/t,vL,vR),

where first, the main functions (x, t) �→ u1(x/t,vL,vR) and (x, t) �→ u2(x/t,vL,vR) exhibit two intermediate
constant states:

u1(x/t,vL,vR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1L if x
t < λr

1(vL),
u1− if λr

1(vL) < x
t < u2,

u1+ if u2 <
x
t < λr

2(vR),
u1R if x

t > λr
2(vR),

u2(x/t,vL,vR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u2L if x
t < λr

3(vL),
u2− if λr

3(vL) < x
t < u2,

u2+ if u2 <
x
t < λr

4(vR),
u2R if x

t > λr
4(vR),

and then,

X(x/t,vL,vR) =

{
XL if x < u2t,

XR if x > u2t,
for X = α1, T1, T2.
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In these formulas, u2 denotes the speed of propagation of the contact associated with λr
0 and satisfies

u2 = u2− = u2+.

Defining u∗ and (αu)∗ by

{
u∗ = 1

2 (u1L + u1R) − 1
2a1

(Π1R − Π1L),
(αu)∗ = 1

2 (α1Lu1L + α1Ru1R) − 1
2a1

(α1RΠ1R − α1LΠ1L),

the four intermediate states

u1± =

(
α1ρ1

α1ρ1u1

)
±
, u2± =

(
α2ρ2

α2ρ2u2

)
±
,

are characterized by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u2 =
α2Lλ

r
3(vL) + α2Rλ

r
4(vR)

α2L + α2R
+
α2LI2L − α2RI2R

a2(α2L + α2R)
+

[α2Π2](uL,uR)
a2(α2L + α2R)

τ2− :=
1
ρ2−

=
u2 − λr

3(vL)
a2

, τ2+ :=
1
ρ2+

=
λr

4(vR) − u2

a2
,

I2L = p2(1/T2L) + a2
2T2L, I2R = p2(1/T2R) + a2

2T2R,

and, setting

m := α1Lρ1−(u1− − u2) = α1Rρ1+(u1+ − u2)

=
−[α2Π2](uL,uR) + a1

(
2(αu)∗ − u2(α1L + α1R)

)
λr

2(vR) − λr
1(vL)

,

⎧⎪⎪⎨
⎪⎪⎩

u1− =
−a1[α2Π2](uL,uR) −MΠ + 2a1(a1(αu)∗ −mu∗)

2a1(a1α1L −m)
, τ1− =

u1− − λr
1(vL)

a1
,

u1+ =
−a1[α2Π2](uL,uR) + MΠ + 2a1(a1(αu)∗ +mu∗)

2a1(a1α1R +m)
, τ1+ =

λr
2(vR) − u1+

a1
,

MΠ = m(I1R − I1L) + a2
1u2(α1R − α1L),

I1L = p1(1/T1L) + a2
1T1L, I1R = p1(1/T1R) + a2

1T1R.

The proof of this result is given in Appendix 1.

Remark 5.5. We underline that, by definition of the phase space Ωr, the volume fraction α1 �= {0, 1}. Moreover,
since the free parameters ak, k = 1, 2 are chosen to guarantee that (5.13) hold, we get that ρ1−, ρ2−, ρ1+ and
ρ2+ are necessarily positive.

5.3. Stability and accuracy properties of the relaxation method

The aim of this section is to give some interesting accuracy and stability properties of the proposed relaxation
method. Their validity naturally relies on similar properties satisfied by the approximate Riemann solution
(x, t) �→ ṽr(x

t ;vL,vR), and allow to validate our approach from a theoretical point of view. The next section
will be devoted to numerical experiments.

We begin by collecting the main properties of the approximate Riemann solution.
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Proposition 5.6 (the Riemann solution (x, t) �→ ṽr(x
t ;vL,vR)). Let uL and uR be two constant states in Ω,

and let vL and vR be the two corresponding equilibrium states defined by (5.8).
(i) (Conservativity). The Riemann solution (x, t) �→ ṽr(x

t ;vL,vR) satisfies the following three conservation
laws if α1L �= α1R: ⎧⎪⎨

⎪⎩
∂tα1ρ1 + ∂xα1ρ1u1 = 0,
∂tα2ρ2 + ∂xα2ρ2u2 = 0,
∂t(α1ρ1u1 + α2ρ2u2) + ∂x(α1ρ1u

2
1 + α2ρ2u

2
2 + α1Π1 + α2Π2) = 0,

and the following four conservation laws when α1L = α1R:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tα1ρ1 + ∂xα1ρ1u1 = 0,
∂t(α1ρ1u1) + ∂x(α1ρ1u

2
1 + α1Π1) = 0,

∂tα2ρ2 + ∂xα2ρ2u2 = 0,
∂t(α2ρ2u2) + ∂x(α2ρ2u

2
2 + α2Π2) = 0.

In other words, the mass and momentum of both phases evolve according to natural conservation laws when
expected.
(ii) (L1 stability). Provided that the free parameters a1 = a1(uL,uR) and a2 = a2(uL,uR) are chosen sufficiently
large according to (5.13) and to (5.14), the Riemann solution (x, t) �→ ṽr(x

t ;vL,vR) belongs to Ωr.
(iii) (Solid contact discontinuity). Assume that uL and uR can be joined by an admissible contact discontinuity
of the equilibrium system (1.2), i.e. are such that the jump relations (2.2) hold. Then, the approximate Riemann
solution (x, t) �→ ṽr(x

t ;vL,vR) is exact in the sense that it consists of an isolated contact discontinuity separating
vL and vR and propagating with speed u2L = u2R.

Proof.
(i) This is true by construction, see indeed systems (5.9).

(ii) We have to check that αk(x
t ;vL,vR) ∈ (0, 1) and ρk(x

t ;vL,vR) > 0 with k = 1, 2 and for all (x, t),
t > 0. The first point is obvious since αk evolves according to a transport equation and then equals
either αkL or αkR. Concerning the second point, we know by Theorem 5.4 that the sign of the densities
ρ1−, ρ1+, ρ2− and ρ2+ are respectively the same as the sign of u1−−λr

1(vL), λr
2(vR)−u1+, u2−λr

3(vL)
and λr

4(vR)−u2. It is then clear by definition of the eigenvalues λr
l , l = 1, ..., 4 that these quantities are

necessarily positive for large values of a1 and a2 (note that u1± and u2 remain bounded in this regime).
(iii) To prove this accuracy property, it is sufficient by uniqueness of the Riemann solution (x, t) �→ ṽr(x

t ;vL,
vR) to verify that the discontinuity separating vL and vR and propagating with speed u2L = u2R is
admissible in the sense of Definition 5.3. The fourth equation of (5.12) is trivially satisfied. The
equilibrium property (5.8) implies T1L = τ1L and T1R = τ1R, but also Π1L = p1(ρ1L) and Π1R = p1(ρ1R).
Invoking the jump relations (2.2), the first three equations in (5.12) are then also immediate. The last
equation follows from the fact that [α2Π2](uL,uR) = α2RΠ2R −α2LΠ2L since uL and uR are joined by
an admissible contact. �

Remark 5.7. It is important to notice at this stage that the accuracy property (iii) would not be satisfied if
the original conservation law ∂tα1ρ1T1 + ∂xα1ρ1T1u1 = 0 had been retained in system (5.9). Indeed, the fourth
equation in (5.12) would read in this case mT1L = mT1R that is mτ1L = mτ1R by the equilibrium property (5.8).
This relation is of course false in general for uL and uR such that the jump relations (2.2) hold.

The results of Proposition 5.6 then easily apply to get the following theorem giving the main properties
satisfied by the relaxation method described in Section 5.1. Recall that the latter is based on the classical
averaging procedure (5.6) of the juxtaposition of Riemann solutions (x, t) �→ ṽr(x

t ;vj ,vj+1) (Step 1), followed
by an instantaneous relaxation that only modifies the relaxation quantities T1j and T2j (Step 2).
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Theorem 5.8 (the relaxation method). The relaxation method described in Section 5.1:
(i) (Conservativity): is always conservative on αkρk, k = 1, 2 and α1ρ1u1 + α2ρ2u2, but also on αkρkuk,

k = 1, 2 if α1j is constant for all j.
(ii) (L1 stability): provides numerical solutions that remain in the phase space provided that the free pa-

rameters ak = ak(uj ,uj+1), k = 1, 2 are chosen sufficiently large according to (5.13) and to (5.14), for
all j.

(iii) (Solid contact discontinuity): captures exactly the stationary admissible contact discontinuities of the
equilibrium system (1.2).

Remark 5.9. Due to the averaging procedure (5.6), it is usual that only the stationary admissible contact
discontinuity may be exactly computed.

Remark 5.10. Property (i) gives the variables that are updated with a conservative formula from time tn

to time tn+1− in the relaxation method. More generally, and using Green’s formula, we easily get from (5.6)
and (5.11) the following non conservative update formula

vn+1−
j = vn

j − ν(g−
j+1/2 − g+

j−1/2) −
1

Δx

∫ xj+1/2

xj−1/2

∫ tn+Δt

tn

d̃(ṽν(x, t))∂xṽν(x, t) dxdt, (5.15)

with g±
j+1/2 = g(ṽr(0±;vn

j ,v
n
j+1)).

We recover in particular that the variables associated with a zero component in the non conservative product
are treated in conservation form.

5.4. A natural cheaper relaxation method

The explicit knowledge of the Riemann solution (x, t) �→ ṽr(x/t,vL,vR) given in Theorem 5.4 relies on the
first computation of [α2Π2](uL,uR). In order to define the reconstructed states uL and uR in (5.10), this
one necessitates twice the resolution of the nonlinear system (2.2) associated with a contact of the equilibrium
system (1.2). A natural modification leading to a cheaper strategy consists in performing the reconstruction
procedure when using the jump relations (4.1) associated with the relaxation system (3.1). Recall indeed that
the former leads to explicit formulas (see Thm. 4.3).

The consequence of such a modification is the loss of the accuracy property (iii) in Proposition 5.6 and
Theorem 5.8 above. Indeed, the new reconstructed states uL and uR are in this case (generally) different from
uL and uR when these states can be joined by an admissible contact of system (1.2) (i.e. satisfy (2.2)). Then
[α2Π2](uL,uR) is no longer exact.

Note however that systems (2.2) and (4.1) lead to the same solution in the asymptotic regime of relative
Mach numbers m2

α2
1−ρ2

1−
and m2

α2
1−ρ2

1−
tending to zero. Indeed, we first get ρ1− = ρ1+ for both systems, then

T1− = τ1− = T1+ = τ1+ by the equilibrium property in (4.1), so that the first three equations eventually
coincide in (2.2) and (4.1). This justifies the proposed modification in the context of subsonic flows of interest
in this paper.

6. Numerical experiments

This section is devoted to numerical simulations of the two fluid two pressure diphasic model. For each test
we compare four different Riemann solvers that we label Rusanov, Relax-exact, Relax(1), Relax(2).

Rusanov denotes a non conservative version of the Rusanov scheme which is explained in detail in [20].
The other solvers are based on the relaxation approach we presented. The first one, labeled Relax-exact

uses the exact Riemann solution (x, t) �→ vr(x
t ;vL,vR) in formula (5.6). We recall that this implies to solve a

fourth-order polynomial which is achieved by an iterative algorithm (see [19]).
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Table 1. Pure stationary contact – initial conditions.

Unity L R
α1 - 0.8 0.2
p1 105 Pa 1.25 p1(ρ1R)
p2 105 Pa 1.25 p2(ρ2R)
u1 m · s−1 50 u1R

u2 m · s−1 0 u2R

The last two schemes use the approximate Riemann solution (x, t) �→ ṽr(x
t ;vL,vR) and correspond to two

different estimations of the term Π1∂xα1. The method labeled Relax(1) estimates this term via the jump
conditions (2.2) of the initial diphasic model (1.2).

The other (cheaper) method labeled Relax(2) uses an estimation via the jump conditions of the relaxation
model (3.1) with λ = 0 and is explained in Section 5.4.

Two kinds of simulations are proposed. The first one referred to as ‘pressures out of equilibrium’ focuses on
system (1.2) without any extra source term. On the contrary, the second one referred to as ‘pressure equilibrium’
takes into account an additional pressure relaxation source term between phases 1 and 2 in the first equation
of system (1.2).

6.1. Pressures out of equilibrium

Here, by the sake of simplicity, we consider the following equations of state:

pk(ρk) = Akρ
γk

k , k = 1, 2, (6.1)

which means that the two phases are isentropic. We note γk the adiabatic coefficient of phase k and Ak a
constant depending on the entropy of the fluid. Actually, Ak is computed on the basis of a reference state:
Ak = pk0

ρ
γk
k0

. We consider a case where the coefficient Ak takes the constant value of 105Pa
(

m3

kg

)γk

, for k = 1, 2
and we choose γ1 = 1.4 and γ2 = 1.2. Computations are performed on 200 cells. Initial conditions correspond
to shock tube test cases:

u0(x) =

{
uL if x < 10,

uR if x > 10.

6.1.1. Pure stationary contact

In this first test case, we consider a left state uL and a right void fraction α1R given in Table 1. Using the
notations of Definition 2.2 we set the right state as uR = u+(uL, α1R). Numerical values of the remaining
variables result from a resolution (for instance with a Newton algorithm) of system (2.2). Since the velocity of
the left state is chosen to be zero, we have that the velocity of the right state is equal to zero. Thus, the two
states uL and uR are separated by a stationary λ0-contact discontinuity. This choice allows us to observe how
each method preserves numerically such a solution. Results for the two phases are displayed at final time 0.02 s
in Figures 3 and 4. In agreement with Theorem 5.8 above, the relaxation solver Relax(1) provides a perfectly
sharp discontinuity at x = 10 m while the two other relaxation methods slightly diffuse the profile. The Rusanov
scheme is even more diffusive. In particular, one can easily notice in Figure 4(b) that only Relax(1) exactly
preserves the stationary profile of velocity u2. The other solvers yield non uniform discrete solutions.

This test case illustrates numerically the importance of the term m(T1R − T1L)δx−u∗
2t added in (5.9) in the

equation associated with α1ρ1T1. Recall that this term is responsible for the approximate Riemann solution
(x, t) �→ ṽr(x

t ;vL,vR) to be exact when an isolated contact discontinuity is considered. Indeed, the Relax(1)
method provides an exact solution. In contrast, the Relax-exact method which does not take into account this
modification leads to an approximate solution.
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Figure 3. Pure stationary contact – numerical results for phase 1.
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Figure 4. Pure stationary contact – numerical results for phase 2.

The failure of the Relax(2) solver has a different origin. This one actually takes into account the additional
term m(T1R − T1L)δx−u∗

2t in (5.9) but is based on an estimation of the non conservative term [α2Π2](uL,uR)
via approximate jump conditions (4.1), instead of (2.2). This explains the non exact capture of the solution
(see Sect. 5.4).

However, note that the errors are significantly smaller for the last two relaxation methods than for the
Rusanov scheme.

6.1.2. Moving contact discontinuity

The initial conditions of this test case are given in Table 2. Data are constant except for the void fraction α1.
Since we have p1 = p2 = 1.25 × 105 Pa and u1 = u2 = 50 m · s−1, the two states uL and uR verify the
jump conditions (2.2) with m = 0. In other terms, the two states are separated by a pure moving λ0-contact
discontinuity of velocity u2 = 50 m · s−1. The results are plotted at time 0.05 s in Figures 5 and 6. We can easily
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Figure 5. Moving contact (1/2).

Table 2. Moving contact – initial conditions.

Unity L R
α1 - 0.8 0.2
p1 105 Pa 1.25 1.25
p2 105 Pa 1.25 1.25
u1 m · s−1 50 50
u2 m · s−1 50 50

Table 3. General shock tube test – initial conditions.

Unity L R
α1 - 0.8 0.2
p1 105 Pa 1.5 1.0
p2 105 Pa 1.5 1.0
u1 m · s−1 50 50
u2 m · s−1 5 5

notice that uniform profiles are preserved by all the methods. On the other hand, one checks that relaxation-
based solvers yield similar results for the void fraction profile in Figure 5. They are obviously much less diffusive
than the Rusanov scheme.

6.1.3. General shock tube test

Initial conditions of this shock tube test are given in Table 3. Results of this simulation are displayed at final
time 0.01 s in Figures 7 and 8. All the solvers based on the relaxation approach give similar results. Again, one
may remark that the relaxation approach is much less diffusive than the Rusanov method.

A second simulation is shown in Figure 9 and corresponds to a general shock tube test, where we compare
results obtained using the two different estimates of [α2Π2] presented above. For fine meshes (400 cells here),
no difference can be spotted.
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Figure 6. Moving contact discontinuity (2/2).

Table 4. Constants in the equation of state.

ck (m · s−1) ρ0
k (kg ·m−3)

Air (1)
√

105 0
Water (2) 1000 999.9

6.2. Pressure equilibrium

We want to solve in this section system (1.2) with the presence of an additional pressure relaxation source
term in the first equation. More precisely, given εp > 0 the pressure relaxation time between the two phases,
this equation becomes

∂tα1 + u2∂xα1 =
1
εp

(p1(ρ1) − p2(ρ2)). (6.2)

We are interested in the asymptotic regime εp → 0, so that equation (6.2) equivalently recasts, at least formally,
p1(ρ1) = p2(ρ2). Numerically, this instantaneous pressure relaxation is done via a two step splitting method
detailed in the following.

First, consider the approximate solution uν(x, tn) at time tn. We solve the convective part of the system
on the whole space domain thanks to one of the proposed Riemann solvers and note the resulting approximate
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Figure 7. General shock tube test – numerical results for phase 1.
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Figure 8. General shock tube test – numerical results for phase 2.

solution uν(x, tn,1). Then the solution uν(x, tn+1) at time tn+1 is obtained by setting

(αkρk)n+1
j = (αkρk)n,1

j ,

(αkρkuk)n+1
j = (αkρkuk)n,1

j , k = 1, 2,

and resolving on each cell the following equation:

p1

(
(α1ρ1)n+1

j

(α1)n+1
j

)
− p2

(
(α2ρ2)n+1

j

1 − (α1)n+1
j

)
= 0, (6.3)

to define the equilibrium void fraction (α1)n+1
j . The equations of state we consider are the same than the ones

given by Munkejord [32] that is

pk = c2k(ρk − ρ0
k), k = 1, 2,

where the constants ck and ρ0
k are respectively the sound speed and the ‘reference density’ of phase k. The

values of these constants are given in Table 4. Equation (6.3) can be solved explicitly. We get the equilibrium
void fraction (α1)n+1

j at time tn+1 by the following formula:

(α2)n+1
j = 1 − (α1)n+1

j =
−ψ2 −

√
ψ2

2 − 4ψ1ψ3

2ψ1
, (6.4)

where

ψ1 = c22ρ
0
2 − c21ρ

0
1,

ψ2 = −c22((α2ρ2)n+1
j + ρ0

2) + c21(−(α1ρ1)n+1
j + ρ0

1),

and

ψ3 = c22(α2ρ2)n+1
j .
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Figure 9. Shock tube-different estimate of [α2Π2].

Table 5. Large relative velocity shock tube – initial conditions.

Unity L R
α1 - 0.29 0.30
p 105 Pa 2.65 2.65
u1 m · s−1 65 50
u2 m · s−1 1 1

6.2.1. Large relative velocity shock tube

This test case is given in Munkejord [32]. The length of the domain is now 100 m and initial conditions are
such that:

u0(x) =

{
uL if x < 50,

uR if x > 50,
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Figure 10. Large relative velocity shock tube – results for phase 1.

Table 6. The water faucet test case – inlet and outlet conditions.

Unity Inlet Outlet
α1 - 0.2 -
p 105 Pa 1.0 1.0
u1 m · s−1 0 -
u2 m · s−1 10 -

with uL and uR written in Table 5. We compute the solution on a grid of 1000 cells. Results are plotted at
final time 0.1 s in Figures 10 and 11. These numerical results are similar to the one obtained in [32] with a
first-order scheme.
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Figure 11. Large relative velocity shock tube – results for phase 2.

6.2.2. The water faucet test case

The water faucet test case is a classical benchmark test for one-dimensional two-phase flow simulations and
is described in Ransom [33]. This test consists in an incoming water flow in presence of gravity in a vertical
tube with length 12 m and diameter 1 m. More precisely, at the temperature T = 50 ◦C, we consider a flow of
water (phase 2) at the top of the tube in x = 0 m with inlet conditions given in Table 6. The bottom of the
tube in x = 12 m is open to room pressure p = 105 Pa (outlet conditions) and the top of the tube is closed to
air flow (phase 1), i.e.

u1(x = 0, t) = 0.
The initial conditions on the domain are given by the inlet conditions. Since a gravity field is introduced in this
test, the momentum balance equation for phase k reads

∂t(αkρkuk) + ∂x

(
αkρku

2
k + pk(ρk)

)
− p1(ρ1)∂xαk = αkρkg, k = 1, 2.
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In the numerical scheme, the source term αkρkg is accounted for by using a standard explicit centered approx-
imation. We fix the boundary conditions to the inlet conditions for the top of the tube while we solve an half
Riemann problem for the bottom (see Dubois and LeFloch [17]). Due to the effect of gravity, a thin liquid jet
will form. It is common to compare the solution of this problem to the analytical solution of the much simpler
model corresponding to the following momentum balance

∂t(α2ρ2u2) + ∂x

(
α2ρ2u

2
2

)
= α2ρ2g.

This gives for the air void fraction (see [14]):

α1(x, t) =

⎧⎨
⎩1 − α0

2u0
2√

2gx+(u0
2)

2
, if x ≤ u0

2t+ 1
2gt

2,

1 − α0
2, otherwise,

(6.5)

where α0
2 = α2(x, t = 0) and u0

2 = u2(x, t = 0) and for the velocity of water:

u2(x, t) =

{√
(u0

2)2 + 2gx, if x ≤ u0
2t+ 1

2gt
2,

u0
2 + gt, otherwise.

(6.6)

Numerical results for Relax(2) method are plotted in Figures 12(a) and 12(b) with different grid resolutions.
Since the other relaxation-based solvers give similar results, we plot results only for the scheme Relax(2). The
results are similar to Munkejord [32] for a first order scheme on the two-fluid two-pressure diphasic model with
instantaneous pressure relaxation.

Appendix 1. Proof of Theorem 5.4

First of all we recall that the eigenvalues and the nature of the characteristic fields of system (5.9) are the
same than the ones of system (3.5).

Moreover, from the first equation in (5.9), we deduce that the variable α1 (and then α2, since α2 = 1 − α1)
admits a jump only on the λ0-contact discontinuity. Then, on the left and on the right of this discontinuity,
we can rewrite system (5.9) as two decoupled systems on the fluid 1 and fluid 2 respectively:⎧⎪⎨

⎪⎩
∂tρ1 + ∂x(ρ1u1) = 0,
∂t(ρ1u1) + ∂x(ρ1u

2
1 + Π1) = 0, for x

t < λr
0 and x

t > λr
0,

∂t(ρ1T1) + ∂x(ρ1T1u1) = 0,
(6.7)

⎧⎪⎨
⎪⎩

∂tρ2 + ∂x(ρ2u2) = 0,
∂t(ρ2u2) + ∂x(ρ2u

2
2 + Π2) = 0, for x

t < λr
0 and x

t > λr
0.

∂t(ρ2T2) + ∂x(ρ2T2u2) = 0,
(6.8)

At the λ0-contact discontinuity, the jump relations (5.12) must be verified.
We focus now on the variable T1. It appears from (6.7) and (5.12), that jumps in T1 are admissible only on

the λ0 and the λ5 wave. The fourth equation in (5.12) implies that the whole jump between the right and left
values is carried by this latter wave. Therefore, T1 is continuous on the λ5-wave and the same is true for all the
other variables by usual jump conditions on (6.7) and (6.8). This implies that the Riemann problem solution
does not depend on the relative position of the λ5- and λ0-waves. Its structure is presented in Figure 13. We
want now to compute the intermediate states for the fluid 2. The Rankine-Hugoniot relations on the momentum
balance equation on the λ3 and λ4-waves read:

−λr
3(vL)(ρ2−u2− − ρ2Lu2L) + (ρ2−u2

2− − ρ2Lu
2
2L) + Π2− − Π2L = 0,

−λr
4(vR)(ρ2Ru2R − ρ2+u2+) + (ρ2Ru

2
2R − ρ2+u

2
2+) + Π2R − Π2+ = 0.
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Figure 12. The water faucet test case – numerical results for Relax(2).

Whereas the continuity of the wave speeds for the λ3, λ4 and λ0-waves gives:

λr
0 = u2− = u2+ = u2,

λr
3(vL) = u2L − a2τ2L = u2 − a2τ2−,
λr

4(vR) = u2R + a2τ2R = u2 + a2τ2+.

(6.9)
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Figure 13. General structure in the subsonic regime of the Riemann solution associated with (5.9).

Using these relations, the Rankine-Hugoniot jump conditions above become:

a2(u2 − u2L) = Π2L − Π2−,
a2(u2 − u2R) = Π2+ − Π2R.

(6.10)

We multiply the first of these equations by α2L, the second by α2R and sum them. By using the last relation
in (5.12), we finally obtain

u2 =
α2Lλ

r
3(vL) + α2Rλ

r
4(vR)

α2L + α2R
+
α2LI2L − α2RI2R

a2(α2L + α2R)
+

[α2Π2](uL,uR)
a2(α2L + α2R)

·

From (6.9), we have

τ2− :=
1
ρ2−

=
u2 − λr

3(vL)
a2

, τ2+ :=
1
ρ2+

=
λr

4(vR) − u2

a2
·

We pass now to the computation of the intermediate states for the fluid 1. The first step is to get the value
of m. The continuity of the wave speeds for the λ1 and λ2-waves gives:

λr
1(vL) = u1L − a1τ1L = u1− − a1τ1−,
λr

2(vR) = u1R + a1τ1R = u1+ + a1τ1+,
(6.11)

whereas by definition of m one has: {
α1L(u1− − u2) = mτ1−,
α1R(u1+ − u2) = mτ1+.

(6.12)

Once m is known, the quantities τ1−, τ1+, u1−, u1+ are then easily obtained by solving a linear system given
by the four equations (6.11)–(6.12) and whose matrix is

⎛
⎜⎜⎜⎝

−a1 0 1 0
0 a1 0 1
m 0 −α1L 0
0 m 0 −α1R

⎞
⎟⎟⎟⎠ .

Its determinant is given by (m−a1α1L)(m+a1α1R) and is negative provided that a1 is chosen sufficiently large
(see Rem. 5.5). Now the third and the fifth relations in (5.12) give

m(u1+ − u1−) + (α1RΠ1+ − α1LΠ1−) = −[α2Π2](uL,uR).
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Then we write

m(λr
2(vR) − λr

1(vL)) = m(u1+ − u1−) + a1m(τ1+ − τ1−)

= −[α2Π2](uL,uR) − (α1RΠ1+ − α1LΠ1−) + a1α1L(u1− − u2) + a1α1R(u1+ − u2)

= −[α2Π2](uL,uR) − a1u2(α1L + α1R) + α1L(a1u1− + Π1−) + α1R(a1u1+ − Π1+).

But for the phase 1, the analogous of (6.10) writes a1u1−+Π1− = a1u1L+Π1L and a1u1+−Π1+ = a1u1R−Π1R.
In other words, the right-hand side is known and as an immediate consequence m also does. Easy calculations
give the expected formulas for u1−, u1+, ρ1−, ρ1+ and m.
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