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AN UNCONDITIONALLY STABLE FINITE ELEMENT-FINITE VOLUME
PRESSURE CORRECTION SCHEME FOR THE DRIFT-FLUX MODEL
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Abstract. We present in this paper a pressure correction scheme for the drift-flux model combining
finite element and finite volume discretizations, which is shown to enjoy essential stability features
of the continuous problem: the scheme is conservative, the unknowns are kept within their physical
bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of
the system decreases; in addition, when using for the drift velocity a closure law which takes the form
of a Darcy-like relation, the drift term becomes dissipative. Finally, the present algorithm preserves
a constant pressure and a constant velocity through moving interfaces between phases. To ensure the
stability as well as to obtain this latter property, a key ingredient is to couple the mass balance and
the transport equation for the dispersed phase in an original pressure correction step. The existence
of a solution to each step of the algorithm is proven; in particular, the existence of a solution to the
pressure correction step is derived as a consequence of a more general existence result for discrete
problems associated to the drift-flux model. Numerical tests show a near-first-order convergence rate
for the scheme, both in time and space, and confirm its stability.
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1. Introduction

Dispersed two-phase flows and, in particular, bubbly flows are widely encountered in industrial applications
as, for instance, nuclear safety studies, which are the context of the present work. Within the rather large
panel of models dealing with such flows, the simplest is the so-called drift-flux model, which consists in balance
equations for an equivalent continuum representing both the gaseous and the liquid phase. For isothermal
flows, this approach leads to a system of three balance equations, namely the overall mass balance, the gas mass
balance and the momentum balance, which reads:

∂tρ + ∇ · (ρ u) = 0 (1.1a)

∂t(ρ y) + ∇ · (ρ y u) = −∇ · (ρ y (1 − y)ur) + ∇ · (D∇y) (1.1b)

∂t(ρ u) + ∇ · (ρ u ⊗ u) + ∇p −∇ · τ(u) = π (1.1c)
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where t stands for the time, ρ, u and p are the (average) density, velocity and pressure in the flow and y stands
for the gas mass fraction. The forcing term π may represent, for instance, the gravity forces. The tensor τ is
the viscous part of the stress tensor, given by the following expression:

τ(u) = μ (∇u + ∇tu) − 2
3

μ (∇ · u) I. (1.2)

For a constant (in space) viscosity, this relation yields:

∇ · τ = μ

[
Δu +

1
3
∇∇ · u

]
. (1.3)

Finally, the diffusion coefficient D is supposed to be non-negative. Diffusion terms represent in most applications
small scale perturbations of the flow due to the presence of the dispersed phase, sometimes called “diphasic
turbulence” and ur is the relative velocity between the liquid and the gaseous phase (the so-called drift velocity);
for both these quantities, a phenomenologic relation must be supplied.

This system must be complemented by an equation of state, which takes the general form:

ρ = � p,α(p, αg) = (1 − αg)ρ� + αg�g(p) (1.4)

where αg stands for the void fraction and �g(p) expresses the gas density as a function of the pressure; in the
ideal gas approximation and for an isothermal flow, which we consider here, �g is simply a linear function:

�g(p) =
p

a2
(1.5)

where a is a constant characteristic of the gas, equal to the sound velocity in an isothermal (monophasic) flow.
The density of the liquid phase ρ� is assumed to be constant. Introducing the gas mass fraction y in (1.4) by
using the relation αg �g = ρ y leads to the following form of the equation of state:

ρ = � p,y(p, y) =
�g(p) ρ�

ρ� y + (1 − y) �g(p)
· (1.6)

The problem is supposed to be posed over Ω, an open bounded connected subset of R
d, d ≤ 3, and over a

finite time interval (0, T ). It must be supplemented by suitable boundary conditions, and initial conditions for
ρ, u and y.

To design a numerical scheme for the solution of the system (1.1), one is faced with several difficulties. Firstly,
since the fluid density ρ� is supposed not to depend on the pressure, almost incompressible zones, i.e. zones
where the void fraction is low, may coexist in the flow with compressible zones, i.e. zones where the void fraction
remains significant. The problem is thus particularly difficult to solve from a numerical point of view, because
the employed numerical scheme has to cope with a wide range of Mach numbers, starting from zero to a fraction
of unity for low to moderate speed flows. Secondly, the gas mass fraction y can be expected, both for physical
and mathematical reasons, to remain in the [0, 1] interval, and it appears strongly desirable that the numerical
scheme reproduces this behaviour at the discrete level. Finally, it appears from numerical experiments that,
in order to avoid numerical instabilities, the algorithm should preserve a constant pressure through moving
interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). Indeed, when
testing a fractional step method for the same problem (1.1) which did not satisfy this property [19], we observed
instabilities when computing flows involving phases of very different densities, the cure to which seems to need a
drastic reduction of the time step. To obtain a scheme stable in the low Mach number limit, the solution that we
adopt here is to use an algorithm inspired from the incompressible flow numerics, namely from the class of finite
element pressure correction methods, and which degenerates to a classical projection scheme when the fluid
density is constant. The last two requirements are met thanks to an original pressure correction step in which
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the mass balance equation is solved simultaneously with a part of the gas mass balance. For technical reasons,
the solution of this latter equation is itself split in two steps, with the first step incorporated to the pressure
correction and the second one performed independently. The coupling of the equations in the projection step is
a major difference with the scheme proposed in [19].

This work takes benefit of ideas developed in a wide literature, so we are only able to quote here some
references, the choice of which will unfortunately probably appear somewhat arbitrary. For a description of
projection schemes for incompressible flow, see e.g. [21,26] and references herein. An extension to barotropic
Navier-Stokes equations close to the scheme developed here can be found in [16], together with references to
(a large number of) related works (see e.g. [23] for the seminal work and [34] for a comprehensive introduction).
Extensions of pressure correction algorithms for multi-phase flows are scarcer, and seem to be restricted to
iterative algorithms, often similar in spirit to the usual SIMPLE algorithm for incompressible flows [24,28,33].
Note that the drift flux model is also considered in the hyperbolic literature (see e.g. [2,3,10,11,14,27,30]),
where Riemann solver based algorithms are proposed; this direction is not taken here, essentially because
we want to address low (down to zero) low Mach number flows. The gas mass balance equation (1.1b) is a
convection-diffusion equation which differs from the usual mass balance for chemical species in compressible
multi-component flows studied in [25] by the addition of a non-linear term of the form ∇ · ρ ϕ(y)ur, where ϕ is
a regular function such that ϕ(0) = ϕ(1) = 0 (in the present case, ϕ(y) = y (1 − y)).

Several theoretical issues concerning the proposed scheme are studied in this paper. First, the existence
of a solution to the pressure correction step, which consists in an algebraic non-linear system, is obtained by
a topological degree argument. Second, we address the stability of the scheme. At the continuous level, the
existence of an entropy for the system when the drift velocity vanishes (i.e. the homogeneous model) is well-
known. It is shown in [22], by a Chapman-Enskog expansion technique, that the two-fluid model can be reduced
to the drift-flux model when a strong coupling of both phases is assumed, with a Darcy-like closure relation for
the drift velocity, i.e. an expression of the form:

ur =
1
λ

(1 − αg)αg
�g(p) − ρ�

ρ
∇p (1.7)

where λ is a positive phenomenological coefficient. The same relation can also be obtained by neglecting in the
two-fluid model the difference of acceleration between both phases [32]. With such an expression for ur, the
drift term becomes a second order term, and it is shown in [22] that it is consistent with the entropy of the
homogeneous model (i.e. that it generates a non-negative dissipation of the entropy). These results are proven
here at the discrete level: up to a minor modification of the proposed scheme, which seems useless in practice,
the entropy is conserved when ur is equal to zero, and when the closure relation (1.7) applies and with a specific
discretization, the drift term generates a dissipation.

This paper is built as follows. The fractional step algorithm for the solution of the whole problem is first
presented in Section 2. The next section is devoted to the analysis of the scheme. We first state the existence
of a solution to each step of the algorithm, the fact that the unknowns are kept within their physical bounds
(Sect. 3.1) and that the algorithm is able to preserve a constant pressure and a constant velocity through moving
interfaces between phases (Sect. 3.2). The proof of the existence of the solution to the pressure correction step is
obtained as a consequence of a more general existence theory for some discrete problems associated to the drift-
flux model, which is exposed in the appendix. The next two sub-sections are devoted to the stability analysis of
the scheme: we first address the case ur = 0 (Sect. 3.3), then the case where ur is given by the Darcy-like closure
relation (1.7) (Sect. 3.4). An inequality for the term corresponding to the work of the pressure forces is obtained
as the consequence of a general result proven in appendix, which may be seen as a discrete renormalization
identity which applies to a system of transport equations. Finally, numerical tests are reported in Section 4;
they include a problem exhibiting an analytical solution which allows to assess convergence properties of the
discretization, a sloshing transient in a cavity, and the evolution of a bubble column.

For the sake of simplicity, we suppose for the presentation of the scheme and its analysis that the velocity
is prescribed to zero on the whole boundary ∂Ω of the computational domain, and that the gas mass flux
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through ∂Ω also vanishes, so that both the normal component of ur and ∇y are zero on the boundary. Moreover,
the analysis of the scheme assumes that pure liquid zones do not exist in the flow; with the proposed algorithm,
this is a consequence of the fact that such zones are not present at the initial time (i.e., at t = 0, y ∈ (0, 1]).
Indeed, getting rid of this latter limitation for the theoretical study seems to be a difficult task. However, the
numerical tests presented in Section 4 are not restricted to these situations. In particular, y = 0 in the liquid
column in the sloshing problem, up to spurious phases mixing by the numerical diffusion near the free surface;
it is also the case at the initial time in the bubble column simulation.

In the presentation of the scheme, the drift velocity is supposed to be known, i.e. to be given by a closure
relation independent of the unknowns of the problem, and this still holds in numerical experiments. The case
where ur is given by (1.7) is thus only treated from a theoretical point of view in Section 3.4.

2. The numerical algorithm

2.1. Time semi-discrete formulation

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which is supposed
uniform for the sake of simplicity. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. In a
time semi-discrete setting, denoting by ρ−1 and u0 initial guesses for the density and velocity, the algorithm
proposed in this paper is the following.

0. Initialization:
ρ0 − ρ−1

δt
+ ∇ · (ρ0u0) = 0. (2.1)

Then, for n ≥ 0:

1. Prediction solve for ũn+1

ρn ũn+1 − ρn−1 un

δt
+ ∇ · (ρn un ⊗ ũn+1) + ∇pn −∇ · τ(ũn+1) = πn+1. (2.2)

2. Solve for pn+1, un+1, ρn+1 and zn+1

ρn un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0 (2.3a)

� p,z(pn+1, zn+1) − ρn

δt
+ ∇ · (� p,z(pn+1, zn+1) un+1) = 0 (2.3b)

zn+1 − ρnyn

δt
+ ∇ · (zn+1 un+1) = 0 (2.3c)

ρn+1 = � p,z(pn+1, zn+1). (2.3d)

3. Solve for yn+1

ρn+1yn+1 − zn+1

δt
+ ∇ · (ρn+1 yn+1(1 − yn+1) un+1

r ) = ∇ · (D∇yn+1). (2.4)

Step 0 is introduced to obtain a compatible discretization of ρ0 for step 1 at n = 0 which is required for the
stability of the scheme.

Step 1 consists in a classical semi-implicit solution of the momentum balance equation to obtain a predicted
velocity.

Step 2 is an original nonlinear pressure correction step, which couples the total mass balance equation (2.3b)
with the transport terms of the gas mass balance equation (2.3c). In this step, we consider as new unknown the
partial gas density z given by z = ρ y, rather than the gas mass fraction y. Thus, the equation of state must be
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reformulated to express the mixture density as a function of the partial gas density and of the pressure, which,
from equation (1.6), yields:

ρ = � p,z(p, z) = z

(
1 − ρ� a2

p

)
+ ρ�. (2.5)

When the liquid and the gas densities are very different, the variations of ρ with respect to z are smoother
than those with respect to y in (1.6), especially in the neighbourhood of y = 0; this change of variable thus
makes the resolution of this step much easier, and the overall algorithm more robust. In counterpart, it leads
to split the gas mass balance equation: transport terms are dealt with in the present step, and the gas mass
fraction is corrected in a next step (step 3) to take into account the drift terms. The pressure correction step
would degenerate in the usual projection step as used in incompressible flows solvers if the density were constant
(i.e. z = 0). Taking the discrete divergence of (2.3a) and using (2.3b) to eliminate the unknown velocity un+1

yields a non-linear elliptic problem for the pressure. Solving simultaneously this elliptic problem and (2.3c) by
Newton’s algorithm, we obtain the pressure and the gas mass fraction. Once the pressure is computed, (2.3a)
yields the updated velocity and (2.3d) gives the end-of-step density.

Finally, in the third step, the remaining terms of the gas mass balance are considered, and the end-of-step
gas mass fraction is computed.

This time discretization is designed to keep the mass fraction y in the physical range [0, 1], to allow the
transport of phases interfaces without generating spurious pressure and velocity variations and to ensure the
stability of (i.e. the conservation of the entropy by) the scheme. To show how this time splitting algorithm
achieves these goals is the aim of the remainder of this paper.

2.2. Mesh and discrete spaces

Let M be a decomposition of the domain Ω into either convex quadrilaterals (d = 2) or hexahedra (d = 3)
or simplices. By E and E(K) we denote the set of all (d − 1)-edges σ of the mesh and of the element K ∈ M
respectively. The set of edges included in the boundary of Ω is denoted by Eext and the set of internal ones
(i.e. E \ Eext) is denoted by Eint. The decomposition M is supposed to be regular in the usual sense of the
finite element literature (e.g. [7]), and, in particular, M satisfies the following properties: Ω̄ =

⋃
K∈M K̄; if

K, L ∈ M, then K̄ ∩ L̄ is reduced to the empty set, to a vertex or (if d = 3) to a segment, or K̄ ∩ L̄ is (the
closure of) a common (d − 1)-edge of K and L, which is denoted by K|L. For each internal edge of the mesh
σ = K|L, nKL stands for the normal vector to σ, oriented from K to L. By |K| and |σ| we denote the measure,
respectively, of the control volume K and of the edge σ.

For stability reasons, the spatial discretization must preferably be based on pairs of velocity and pressure
approximation spaces satisfying the so-called inf-sup or Babuska-Brezzi condition (e.g. [5]). We choose here as
in [19] the Rannacher and Turek element [29] for quadrilateral or hexahedric meshes, or the Crouzeix-Raviart
element (see [8] for simplicial meshes. These are non-conforming approximations with degrees of freedom for
the velocity located at the center of the faces which seem to be well suited to a coupling with a finite volume
treatment of the total mass balance (2.3b) and gas mass balance (2.4), ensuring that physical bounds on ρ and y

are respected. The reference element K̂ for the rotated bilinear element is the unit d-cube (with edges parallel
to the coordinate axes); the discrete functional space on K̂ is Q̃1(K̂)d, where Q̃1(K̂) is defined as follows:

Q̃1(K̂) = span
{
1, (xi)i=1,...,d, (x2

i − x2
i+1)i=1,...,d−1

}
.

The reference element for the Crouzeix-Raviart is the unit d-simplex and the discrete functional space is the
space P1 of affine polynomials. For both velocity elements used here, the degrees of freedom are determined by
the following set of nodal functionals:

{Fσ,i, σ ∈ E(K), i = 1, . . . , d} Fσ,i(v) = |σ|−1

∫
σ

vi dγ. (2.6)
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The mapping from the reference element to the actual one is, for the Rannacher-Turek element, the standard Q1

mapping and, for the Crouzeix-Raviart element, the standard affine mapping. Finally, in both cases, the
continuity of the average value of discrete velocities (i.e., for a discrete velocity field v, Fσ,i(v), 1 ≤ i ≤ d)
across each face of the mesh is required, thus the discrete space Wh is defined as follows:

Wh = { vh ∈ L2(Ω) : vh|K ∈ W (K)d, ∀K ∈ M; Fσ,i(vh) continuous across each edge σ ∈ Eint, 1 ≤ i ≤ d ;

Fσ,i(vh) = 0, ∀σ ∈ Eext, 1 ≤ i ≤ d }

where W (K) is the space of functions on K generated by the reference element and the mapping described
above. For both Rannacher-Turek and Crouzeix-Raviart discretizations, the pressure is approximated by the
space Lh of piecewise constant functions:

Lh =
{
qh ∈ L2(Ω) : qh|K = constant, ∀K ∈ M}

.

From the definition (2.6), each velocity degree of freedom can be univoquely associated to an element edge.
Hence, the velocity degrees of freedom may be indexed by the number of the component and the associated
edge, and the set of velocity degrees of freedom reads:

{vσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.

We define vσ =
∑d

i=1 vσ,i e(i) where e(i) is the ith vector of the canonical basis of R
d. We denote by ϕ

(i)
σ the

vector shape function associated to vσ,i, which, by the definition of the considered finite elements, reads:

ϕ(i)
σ = ϕσ e(i),

where ϕσ is a scalar function.
Each degree of freedom for the pressure is associated to a cell K, and the set of pressure degrees of freedom

is denoted by {pK , K ∈ M}. The density ρ, the gas mass fraction y and the gas partial density z are also
approximated by piecewise constant functions over each element, and the associated sets of degrees of freedom
are denoted by {ρK , K ∈ M}, {yK , K ∈ M} and {zK , K ∈ M} respectively.

In the definition of the scheme, we also need a dual mesh, which is defined as follows. For any K ∈ M
and any face σ ∈ E(K), let DK,σ be the cone of basis σ and of opposite vertex the mass center of K. The
volume DK,σ is referred to as the half-diamond mesh associated to K and σ. For σ ∈ Eint, σ = K|L, we
now define the diamond mesh Dσ associated to σ by Dσ = DK,σ ∪ DL,σ. We denote by ε = Dσ|Dσ′ the face
separating two diamond meshes Dσ and Dσ′ (see Fig. 1).

2.3. The fully discrete scheme

The mass balance equations (2.1) and (2.3b) are discretized by a finite-volume technique. The fully discrete
version of (2.3b) is:

∀K ∈ M,
|K|
δt

(� p,z(pn+1
K , zn+1

K ) − ρn
K) +

∑
σ=K|L

Fn+1
σ,K = 0 (2.7)

where Fn+1
σ,K is an approximation of the integral over σ = K|L of � p,z(pn+1

K , zn+1
K ) un+1 · nKL. To ensure the

positivity of the density, we use an upwinding technique for the convection term:

Fn+1
σ,K = (v+

σ,K)n+1 � p,z(pn+1
K , zn+1

K ) − (v−
σ,K)n+1 � p,z(pn+1

L , zn+1
L )

where (v+
σ,K)n+1 = max(vn+1

σ,K , 0) and (v−
σ,K)n+1 = −min(vn+1

σ,K , 0) with vn+1
σ,K = |σ|un+1

σ · nKL.
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Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=

K
|L

ε = D
σ |D

σ ′

Figure 1. Notations for control volumes and diamond cells.

The velocity prediction equation is approximated by a combination of a dual mesh finite volume technique
for the unsteady term and convection term, and a finite element technique for the other terms:

∀σ ∈ Eint, for 1 ≤ i ≤ d,
|Dσ|
δt

(ρn
σ ũn+1

σ,i − ρn−1
σ un

σ,i) +
∑

ε∈E(Dσ),
ε=Dσ |Dσ′

1
2

Fn
ε,σ (ũn+1

σ,i + ũn+1
σ′,i ) + ad(ũn+1, ϕ(i)

σ )

−
∫

Ω,h

pn ∇ · ϕ(i)
σ =

∫
Ω

πn+1 · ϕ(i)
σ (2.8)

where Fn
ε,σ is the discrete mass flux through the dual edge ε outward Dσ and the bilinear form ad represents

the viscous term and is defined as follows:

∀v ∈ Wh, ∀w ∈ Wh,

ad(v, w) =

∣∣∣∣∣∣∣∣∣
μ

∫
Ω,h

[
∇v : ∇w +

1
3
∇ · v ∇ · w

]
dx if (1.3) holds (case of constant viscosity),∫

Ω,h

τ(v) : ∇w dx with τ given by (1.2) otherwise.

The main motivation to implement a finite volume approximation for the first two terms is to obtain a discrete
equivalent of the kinetic energy theorem, which reads:

∑
σ∈Eint

[
|Dσ|
δt

(ρn
σ ũn+1

σ − ρn−1
σ un

σ) +
∑

ε∈E(Dσ),
ε=Dσ |Dσ′

1
2

Fn
ε,σ (ũn+1

σ + ũn+1
σ′ )

]
· uσ

≥ 1
2

∑
σ∈Eint

|Dσ|
δt

[
�n

σ |ũn+1
σ |2 − �n−1

σ |un
σ|2

]
. (2.9)
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For this result to be valid, the necessary condition is that the convection operator vanishes for a constant
velocity, i.e. that the following discrete mass balance over the diamond cells is satisfied [1,19]:

∀σ ∈ Eint,
|Dσ|
δt

(ρn
σ − ρn−1

σ ) +
∑

ε∈E(Dσ),
ε=Dσ |Dσ′

Fn
ε,σ = 0.

This governs the choice for the definition of the density approximation ρσ and the mass fluxes Fε,σ. The
density ρσ is defined by a weighted average:

∀σ ∈ Eint, |Dσ| ρσ = |DK,σ| ρK + |DL,σ| ρL (2.10)

and the flux Fε,σ through the dual edge ε of the half diamond cell DK,σ is computed as the flux through ε
of a constant divergence lifting of the mass fluxes through the edges of the primal cell K, i.e. the quantities
(Fσ,K)σ∈E(K) appearing in (2.7). For a detailed construction of this approximation, we refer to [1,19].

The discretization of (2.3a) is consistent with that of the momentum balance (2.8), i.e. we use a mass
lumping technique for the unsteady term and a standard finite element formulation for the gradient of the
pressure increment:

∀σ ∈ Eint, for 1 ≤ i ≤ d,
|Dσ|
δt

ρn
σ (un+1

σ,i − ũn+1
σ,i ) −

∫
Ω,h

(pn+1 − pn) ∇ · ϕ(i)
σ dx = 0.

Since the pressure is piecewise constant, the transposed of the discrete gradient operator takes the form of
the finite volume standard discretization of the divergence based on the finite element mesh, thus the previous
relation can be rewritten as follows:

∀σ ∈ Eint, σ = K|L,
|Dσ|
δt

ρn
σ (un+1

σ − ũn+1
σ ) + |σ| [(pn+1

L − pn
L) − (pn+1

K − pn
K)

]
nKL = 0. (2.11)

Consistently with the mass balance equation, we use for the discretization of (2.3c), i.e. the transport of the
gas partial density z, a finite volume method with an upwind technique for the convection term ∇ · (z u). This
yields the following discrete equation:

∀K ∈ M,
|K|
δt

(zn+1
K − ρn

K yn
K) +

∑
σ=K|L

(v+
σ,K)n+1 zn+1

K − (v−
σ,K)n+1 zn+1

L = 0. (2.12)

For the practical solution of the projection step, equations (2.11) and (2.7) are combined to eliminate the
end-of-step velocity and obtain a discrete elliptic problem for the pressure; these algebraic manipulations are
detailed in [19]. We are thus left with a system of two-coupled nonlinear equations; this system is solved by
a Newton technique, which requires in practice a few iterations, and the linear systems involved in Newton’s
method are solved by a GMRES algorithm.

Finally, so as to be consistent with the discretization of the first part of the gas mass balance (2.12), the
correction step for y is discretized by the finite volume method, and the resulting discrete problem reads:

|K| ρn+1
K yn+1

K − zn+1
K

δt
+

∑
σ=K|L

Gn+1
σ,K Φσ(yn+1

K , yn+1
L ) + D

∑
σ=K|L

|σ|
dσ

(yn+1
K − yn+1

L ) = 0 (2.13)

where:
– The flux Gn+1

σ,K is given by:

Gn+1
σ,K = ρn+1

σ,up

∫
σ

un+1
r · nσ,
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where ρn+1
σ,up stands for ρn+1

σ,up = ρn+1
K if un+1

r ·nσ ≥ 0 and ρn+1
σ,up = ρn+1

L otherwise. Note that this upwind
choice with respect to un+1 has no theoretical justification: in fact, the developments of this paper hold
with any discretization for this density, and we use here the same discretization as in the mass balance
merely for ease of implementation.

– The quantity Φσ(yn+1
K , yn+1

L ) stands for g(yn+1
K , yn+1

L ) if Gn+1
σ,K ≥ 0 and for g(yn+1

L , yn+1
K ) otherwise,

g being a monotone numerical flux function [13] for ϕ(y) = max[ y (1 − y), 0 ] given by:

g(a1, a2) = g1(a1) + g2(a2),

where g1(a1) = a1 if a1 ∈ [0, 1] and g1(a1) = 0 otherwise, and g2(a2) = −(a2)2 if a2 ∈ [0, 1] and
g2(a2) = 0 otherwise. Note that this choice does not exactly match the definition, as neither g1 nor g2

are continuous at a1 = 1 and a2 = 1 respectively. However, this is unimportant, as one can prove that
the solution y remains in the interval (0, 1] in any case, as stated in [19], Theorem 2.2.

– For all edge σ = K|L, dσ denotes the Euclidean distance between two points xK and xL of the adjacent
cells K and L, supposed to be such that the segment [xK , xL] is perpendicular to K|L. These points
may be defined as follows: if the control volume K is a rectangle or a cuboid, xK is the barycenter
of K; if the control volume K is a simplex, xK is the circumcenter of the vertices of K. Note that, in
this latter case, the condition xK ∈ K implies some geometrical constraints on the cells K, which are
of course no longer needed if the diffusion coefficient D is zero.

3. Properties of the scheme

3.1. Well posedness, conservativity and physical bounds

Theorem 3.1. Let the density of the liquid phase be constant and the gas phase obey the ideal gas law. In
addition, we assume that the initial density is positive and the initial gas mass fraction belongs to the inter-
val (0, 1]. Then there exists a solution (un)1≤n≤N , (pn)1≤n≤N , (ρn)1≤n≤N , (zn)1≤n≤N and (yn)1≤n≤N to the
scheme which enjoys the following properties, for all n ≤ N :

– the unknowns lie in their physical range:

∀K ∈ M, ρn
K > 0, zn

K > 0, pn
K > 0, yn

K ∈ (0, 1];

– the total mass and the gas mass are conserved:∑
K∈M

|K| ρn
K =

∑
K∈M

|K| ρ0
K ,

∑
K∈M

|K| zn
K =

∑
K∈M

|K| ρn
Kyn

K =
∑

K∈M
|K| ρ0

Ky0
K .

Proof. The fact that the velocity prediction step has a unique solution is a straightforward consequence of the
discrete kinetic energy balance relation (2.9); indeed the problem is linear and, by dissipativity of the diffusion
term, an estimate can be given for the solution. We prove in Appendix B that, if ∀K ∈ M, ρn

K > 0 and
yn

K ∈ (0, 1], the system (2.11)–(2.12) has a solution, and any solution of this step is such that:

∀K ∈ M, ρn+1
K > 0, pn+1

K > 0, zn+1
K > 0 and

zn+1
K

ρn+1
K

∈ (0, 1].

Finally, using these last bounds, we get yn+1
K ∈ (0, 1] from [19], Theorem 2.2 and Remark 2.1. The proof of the

first assertion of the theorem follows by an easy induction. �
Remark 3.2 (uniqueness of the solution). Although it has not been proved, the solution of the system is
probably unique. At any rate, the solvers never seem to oscillate between two solutions.
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3.2. Transport of interfaces

We now turn to another feature of the scheme, which numerical experiments have shown to be crucial for
the robustness of the algorithm. In this section, the drift velocity ur, the diffusion coefficient D and the forcing
term π are set to zero. In addition, we momentarily forget the boundary condition and consider the problem
posed over R

n. Then the continuous problem enjoys the following property: if the initial velocity and the initial
pressure are constant, u = u0 and p = p0 respectively, then they remain constant in time, while ρ or z are
transported by this (constant) velocity; this solution corresponds to the transport of the contact discontinuity of
the underlying hyperbolic system, the wave structure of which is quite similar to that of the Euler equations [22].
Let us then prove that the numerical scheme considered in this paper presents the same behaviour: if, at the
initial time, u0

K = u0 and p0
K = p0 for all K ∈ M, then pn+1

K = p0 and un+1
K = u0, for all K ∈ M and n < N .

Assume that, at time t = tn, the velocity un and the pressure pn take the constant value u0 and p0 respectively
and let us check that there exists a solution un+1, pn+1, zn+1 and yn+1 to the scheme such that un+1 = u0 and
pn+1 = p0. For π = 0, the discrete momentum balance equation (2.8) reads:

∀σ ∈ Eint, for 1 ≤ i ≤ d,

|Dσ|
δt

(ρn
σũn+1

σ,i − ρn−1
σ un

σ,i) +
∑

ε∈E(Dσ),
ε=Dσ |Dσ′

1
2

Fn
ε,σ (ũn+1

σ,i + ũn+1
σ′,i ) −

∫
Ω,h

pn ∇ · ϕ(i)
σ dx = 0.

Replacing un and pn by u0 and p0 respectively and taking ũn+1
σ = u0 for all σ ∈ Eint, this system becomes:

∀σ ∈ Eint, σ = K|L, u0

⎡⎣ |Dσ|
δt

(ρn
σ − ρn−1

σ ) +
∑

ε∈E(Dσ)

Fn
ε,σ

⎤⎦ = 0,

which indeed holds thanks to the equivalence between mass balances over primal and dual meshes [1]. We now
turn to the pressure correction step, which we recall:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|Dσ|
δt

ρn
σ (un+1

σ − ũn+1
σ ) + |σ| [(pn+1

L − pn
L) − (pn+1

K − pn
K)

]
nKL = 0, ∀σ ∈ Eint, σ = K|L

|K|
δt

[
� p,z(pn+1

K , zn+1
K ) − ρn

K

]
+

∑
σ∈E(K)

[
(v+

σ,K)n+1 � p,z(pn+1
K , zn+1

K ) − (v−
σ,K)n+1 � p,z(pn+1

L , zn+1
L )

]
= 0, ∀K ∈ M

|K|
δt

(zn+1
K − zn

K) +
∑

σ∈E(K)

[
(v+

σ,K)n+1 zn+1
K − (v−

σ,K)n+1 zn+1
L

]
= 0, ∀K ∈ M.

Taking un+1
σ = u0 for all σ ∈ Eint and pn+1

K = p0 for all K ∈ M, the left-hand-side of the first equation of this
system vanishes. We then proceed as in [15]; remarking that for a fixed pressure, the equation of state giving
the density ρ as a function of z becomes an affine function:

ρ = � p,z(p0, z) = z

(
1 − ρ� a2

p0

)
+ ρ�,
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we get from the mass balance equation (2.7):

|K|
δt

[(
zn+1

K − zn
K

) (
1 − ρ� a2

p0

)]
+

∑
σ∈E(K)

(v+
σ,K)n+1

[
zn+1

K

(
1 − ρ� a2

p0

)
+ ρ�

]

− (v−
σ,K)n+1

[
zn+1

L

(
1 − ρ� a2

p0

)
+ ρ�

]
= 0,

or equivalently:

(
1 − ρ� a2

p0

) ⎡⎣ |K|
δt

(zn+1
K − zn

K) +
∑

σ∈E(K)

[
(v+

σ,K)n+1 zn+1
K − (v−

σ,K)n+1 zn+1
L

]⎤⎦ + ρ�

∑
σ∈E(K)

vn+1
σ,K = 0.

The last term vanishes for un+1 = u0 of the left-hand-side of this equality and thus we get exactly the same
equation as that the partial gas mass balance (2.12). Thus, un+1 = u0, pn+1 = p0, zn+1 given by this latter
equation and yn+1 satisfying the correction step (which, for ur = 0 and D = 0 becomes ρn+1yn+1 = zn+1) is
a solution to the scheme. Consequently, provided that the solution is unique, the algorithm indeed preserves
constant pressure and velocity through moving interfaces between phases, and transports this interface with
this constant velocity.

Remark 3.3 (boundary conditions). The same property holds with a bounded computational domain when
prescribing on the boundary either u = u0 or a Neumann condition compatible with u = u0 and p = p0; this
fact has been confirmed by numerical experiments, although we omit its proof here, to avoid the technicalities
of the description of these latter discrete boundary conditions.

3.3. Stability analysis: the homogeneous model case

The aim of this section is to provide some results concerning the stability of (i.e. the conservation of the
entropy by) the scheme considered in this paper, in the case where both the drift velocity ur and the diffusion
coefficient for the mass fraction of the dispersed phase D vanish (i.e. for the homogeneous model). Precisely
speaking, we prove that the usual entropy associated to the homogeneous model is conserved by the scheme, if we
add to the algorithm a pressure renormalization step. Note however, that this step should not be implemented
in practice, since its beneficial effects are not clear in numerical tests.

We begin by introducing the volumetric free energy of the system. In the two-phase mixture considered here,
ρ� is constant and ρg is linearly increasing with the pressure:

ρg =
1
a2

p

where a is a positive real number (from a physical point of view, it is the sound velocity in a pure gaseous
isothermal flow). For any positive ρ and z such that z−ρ+ρ� > 0, the relation (1.6) giving the mixture density
as a function of the gas mass fraction and the phase densities may be recast through (2.5) under the following
form:

1
a2

p = � ρ,z
g (ρ, z) =

z ρ�

z + ρ� − ρ
· (3.1)

The volumetric free energy of the mixture is given by:

F(ρ, z) = a2 z ln(� ρ,z
g (ρ, z)). (3.2)
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Lemma 3.4. The function F defined by (3.2) enjoys the following properties:

– the function F is continuously differentiable over the convex subset of R
2:

C = {(ρ, z) ∈ R
2 s.t. ρ > 0, z > 0, z − ρ + ρ� > 0}; (3.3)

– we have the following identity:
ρ ∂ρF + z ∂zF − F = p; (3.4)

– the function F is convex over C.

Proof. To prove relation (3.4), let us remark that F can be written as:

F(ρ, z) = z Fg(� ρ,z
g (ρ, z)) with Fg(s) = a2 ln(s) so that F ′

g(s) =
℘(s)
s2

where ℘ : s 
→ a2s is the function giving the pressure as a function of the gas density (thus, in particular,
F ′

g(ρg) = p/ρ2
g). Such a function Fg is usually referred to as the specific free energy of the gaseous phase.

Developing the derivatives and using the definition of Fg, we get:

ρ ∂ρF + z ∂zF − F = ρ z F ′
g(ρg)∂ρ�

ρ,z
g + z2 F ′

g(ρg)∂z�
ρ,z
g + zFg(ρg) − zFg(ρg)

= z
p

ρ2
g

[
ρ ∂ρ�

ρ,z
g + z∂z�

ρ,z
g

]
.

(3.5)

From the expression (3.1), we have:

∂ρ�
ρ,z
g =

ρ2
g

ρ� z
and ∂z�

ρ,z
g =

ρ2
g(ρ� − ρ)
ρ� z2

· (3.6)

Substituting in (3.5) leads to:
ρ ∂ρF + z ∂zF − F = p.

The convexity of F is obtained from its explicit form:

F(ρ, z) = a2 z ln
(

z ρ�

z + ρ� − ρ

)
·

Differentiating twice this expression, we get:

∂2
ρF = a2 z

(z + ρ� − ρ)2
, ∂2

zF = a2 (ρ� − ρ)2

z (z + ρ� − ρ)2
, ∂2

ρzF = ∂2
zρF = a2 ρ� − ρ

(z + ρ� − ρ)2
·

It is thus easy to check that the determinant of the Hessian matrix A of F is zero while its trace is positive.
One eigenvalue of A is thus zero and the second one is positive, and F is convex. �

In this section, we use the following discrete norm and semi-norm:

∀v ∈ Wh, ||v||2h,ρ =
∑

σ∈Eint

|Dσ| ρσ |vσ|2

∀q ∈ Lh, |q|2h,ρ =
∑

σ∈Eint, σ=K|L

1
ρσ

|σ|2
|Dσ| (qK − qL)2

(3.7)
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where ρ = (ρσ)σ∈Eint is a family of positive real numbers. The function || · ||2h,ρ defines a norm over Wh, and
| · |h,ρ can be seen as a weighted version of the discrete H1 semi-norm classical which is in the finite volume
context [13].

With a zero drift velocity and a zero diffusion coefficient, the numerical scheme at hand reads, leaving it for
short in the time semi-discrete setting:

1. solve for ũn+1

ρn ũn+1 − ρn−1 un

δt
+ ∇ · (ρn un ⊗ ũn+1) + ∇pn −∇ · τ(ũn+1) = πn+1; (3.8)

2. solve for pn+1, un+1, ρn+1 and zn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρn un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0

� p,z(pn+1, zn+1) − ρn

δt
+ ∇ · (� p,z(pn+1, zn+1) un+1) = 0

zn+1 − ρnyn

δt
+ ∇ · (zn+1 un) = 0

ρn+1 = � p,z(pn+1, zn+1);

(3.9)

3. solve for yn+1

ρn+1yn+1 = zn+1. (3.10)

Lemma 3.5. Let the density of the liquid phase be constant, let the gas phase obey the ideal gas law and
let F(ρ, z) be the corresponding volumetric free energy of the mixture, defined by (3.2). We assume that the
density ρn is positive and the gas mass fraction yn belongs to the interval (0, 1]. Let un+1, pn+1, zn+1 and
ρn+1 be a solution to the discrete equations associated to (3.9), i.e. (2.11), (2.7) and (2.12). Then the following
inequality holds:

−
∫

Ω,h

pn+1 ∇ · un+1 dx ≥
∫

Ω

F(ρn+1, zn+1) dx −
∫

Ω

F(ρn, zn) dx.

Proof. By assumption, for any K ∈ M, (ρn
K , zn

K) belongs to the convex subset C of R
2 defined in Lemma 3.4. By

Theorem B.4, (ρn+1
K , zn+1

K ) exists and also belongs to C. Thanks to Lemma 3.4, we may thus invoke Theorem A.1,
which yields the result. �

Proposition 3.6 (a partial stability result). Let the density of the liquid phase be constant, let the gas phase
obey the ideal gas law and let F(ρ, z) be the corresponding volumetric free energy of the mixture, defined by (3.2).
We assume that the density ρn is positive and the gas mass fraction yn belongs to the interval (0, 1]. Let ũn+1,
un+1, pn+1, zn+1 and ρn+1 be a solution to the discrete equations associated to (3.8)–(3.9), i.e. (2.8), (2.11), (2.7)
and (2.12), with a zero forcing term. Then the following bound holds:

1
2
||un+1||2h,ρn +

∫
Ω

F(ρn+1, zn+1) dx + δt ad(ũn+1, ũn+1) +
δt2

2
|pn+1|2h,ρn

≤ 1
2
||un||2h,ρn−1 +

∫
Ω

F(ρn, ρnyn) dx +
δt2

2
|pn|2h,ρn . (3.11)
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Proof. Multiplying each component of (2.8) by the corresponding unknown ũn+1
σ,i and summing over the edges

and the components yields, by virtue of the kinetic energy identity (2.9):

1
2 δt

||ũn+1||2h,ρn − 1
2 δt

||un||2h,ρn−1 + ad(ũn+1, ũn+1) −
∫

Ω,h

pn∇ · ũn+1 dx ≤ 0. (3.12)

On the other hand, the first relation of the projection step (2.11) reads, for any σ = K|L ∈ Eint:

[
|Dσ| ρn

σ

δt

]1/2

un+1
σ +

[
|Dσ| ρn

σ

δt

]−1/2

|σ| (pn+1
L − pn+1

K ) nKL

=

[
|Dσ| ρn

σ

δt

]1/2

ũn+1
σ +

[
|Dσ| ρn

σ

δt

]−1/2

|σ| (pn
L − pn

K) nKL.

Squaring this relation gives (T1)σ = (T2)σ, where (T1)σ and (T2)σ are the square of the norm of the left and
right-hand-side respectively. We get, by the definition (3.7) of the velocity norm and pressure semi-norm:

(T1)σ =
|Dσ|
δt

ρn
σ |un+1

σ |2 + 2|σ| (pn+1
L − pn+1

K ) un+1
σ · nKL + δt

|σ|2
|Dσ|

1
ρn

σ

(pn+1
L − pn+1

K )2.

Summing over the internal edges and reordering the sums, we get:

∑
σ∈Eint

(T1)σ =
1
δt

||un+1||2h,ρn − 2
∫

Ω,h

pn+1∇ · un+1 dx + δt |pn+1|2h,ρn .

By the same computation for the left-hand-side, we get:

1
2δt

||un+1||2h,ρn −
∫

Ω,h

pn+1∇ · un+1 dx +
δt

2
|pn+1|2h,ρn =

1
2δt

||ũn+1||2h,ρn −
∫

Ω,h

pn∇ · ũn+1 dx +
δt

2
|pn|2h,ρn .

Summing this last relation with (3.12) yields:

1
2δt

||un+1||2h,ρn − 1
2 δt

||un||2h,ρn−1 + ad(ũn+1, ũn+1)

+
δt

2
|pn+1|2h,ρn − δt

2
|pn|2h,ρn −

∫
Ω,h

pn+1 ∇ · un+1 dx ≤ 0.

We thus conclude the proof by invoking Lemma 3.5. �

The following theorem yields an estimate on the discrete entropy of the system, which is defined as the sum
of the kinetic energy and the free energy; its expression at time tn+1 is:

1
2
||un+1||2h,ρn +

∫
Ω

F(ρn+1, zn+1).

Theorem 3.7 (stability of the scheme, case ur = D = 0). Let the density of the liquid phase be constant, let
the gas phase obey the ideal gas law and let F(ρ, z) be the corresponding volumetric free energy of the mixture,
defined by (3.2). We suppose that the initial density is positive and the initial gas mass fraction belongs to the
interval (0, 1].
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We now add to the scheme (3.8)–(3.10) the following renormalization step of the pressure, to be performed
at the very beginning of the time step, before the velocity prediction step (3.8):

Solve for p̃n+1: −∇ ·
(

1
ρn

∇p̃n+1

)
= −∇ ·

(
1√

ρn ρn−1
∇pn

)

or, in the fully discrete setting:

∀K ∈ M,
∑

σ=K|L

|σ|2
|Dσ|

1
ρn

σ

(p̃n+1
K − p̃n+1

L ) =
∑

σ=K|L

|σ|2
|Dσ|

1
(ρn

σ ρn−1
σ )1/2

(pn
K − pn

L). (3.13)

Accordingly, the pressure used in the velocity prediction step must be changed to p̃n+1.
Let (ũn)0≤n≤N , (un)0≤n≤N , (pn)0≤n≤N , (zn)0≤n≤N and (ρn)0≤n≤N be the solution to this modified scheme,

i.e., for the discrete equations (3.13), (2.8), (2.11), (2.7) and (2.12), with a zero forcing term. Then the following
entropy conservation result holds for 0 ≤ n < N :

1
2
||un+1||2h,ρn +

∫
Ω

F(ρn+1, zn+1) dx + δt

n+1∑
k=1

ad(ũk, ũk) +
δt2

2
|pn+1|2h,ρn

≤ 1
2
||u0||2h,ρ0 +

∫
Ω

F(ρ0, z0) dx +
δt2

2
|p0|2h,ρ0 . (3.14)

Proof. By the same proof as for the scheme without the pressure renormalization step, we get:

1
2δt

||un+1||2h,ρn + ad(ũn+1, ũn+1) +
δt

2
|pn+1|2h,ρn +

1
δt

∫
Ω

F(ρn+1, zn+1) dx

≤ 1
2 δt

||un||2h,ρn−1 +
δt

2
|p̃n+1|2h,ρn +

1
δt

∫
Ω

F(ρn, ρnyn) dx

and the conclusion follows by summing over the time steps, remarking that zn+1 = ρn+1yn+1 and, that thanks
to the renormalization step (see [16] for a detailed computation):

|p̃n+1|2h,ρn ≤ |pn|2h,ρn−1 . �

Note that a similar pressure renormalization step has already been introduced for variable density incom-
pressible flows [20].

3.4. Stability analysis: dissipativity of the drift term

We address in this section the case where the drift velocity is given by the Darcy-like closure relation (1.7):

ur =
1
λ

(1 − αg)αg
�g(p) − ρ�

ρ
∇p.

In this relation, λ is a positive phenomenological coefficient and αg is the void fraction, which can be expressed
as a function of the unknowns used in the scheme as αg = z/�g(p). With this expression, a natural discretization
for the mass flux associated to ur reads:

Gσ,K = |σ| ρσ,up

[
αg (1 − αg)

λρ
(ρg − ρ�)

]
σ

(pL − pK) (3.15)
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where ρσ,up is a density on σ, which, for practical implementation reasons, we choose to be an upwind ap-
proximation with respect to the mean velocity u. The goal of this section is to show that it is possible to
approximate: [

αg (1 − αg)
λρ

(ρg − ρ�)
]

σ

in such a way that the drift term is dissipative with respect to the entropy of the system.
We begin this section by stating a consequence of the equation of state for the mixture which is central to

the present development.

Lemma 3.8. Let the density of the liquid phase be constant, let the gas phase obey the ideal gas law, let F(ρ, z)
be the corresponding volumetric free energy of the mixture, defined by (3.2), and let h(ρ, z) = ∂zF(ρ, z). Then
the following results hold:

(1) h only depends on the pressure, i.e. there exists a function hp such that, for ρ and z in the convex set C
defined by (3.3), h(ρ, z) = hp(℘(ρ, z)), where ℘ is the function giving the pressure as a function of ρ
and z:

p = ℘(ρ, z) = a2 � ρ,z
g (ρ, z) = a2 z ρ�

z + ρ� − ρ
;

(2) the derivative of hp is given by:

h′
p(p) =

ρ� − ρg(p)
ρ� ρg(p)

;

(3) for any positive real numbers p1 and p2 such that p1 < p2, there exists p1,2 ∈ [p1, p2] such that:

h′
p(p1,2)

hp(p1) − hp(p2)
p1 − p2

≥ 0.

Proof. Let (ρ, z) ∈ C, then the pressure or, equivalently, the gas density ρg can be expressed as a function of
(ρ, z) by ρg = � ρ,z

g (ρ, z). By the definition of F , we thus have, using the notations of the proof of Lemma 3.4:

h(ρ, z) = ∂zF(ρ, z) = Fg(ρg(ρ, z)) + z ∂zFg(ρ, z) = a2 ln
( p

a2

)
+ z F ′

g(ρg) ∂z�
ρ,z
g (ρ, z).

Then using the expression (3.6) of the derivative of � ρ,z
g with respect to the second variable, we get:

h(ρ, z) = a2 ln
( p

a2

)
+ p

ρ� − ρ

ρ� z
·

Using the fact that ρ = (1 − αg)ρ� + αg ρg and thus ρ� − ρ = αg (ρ� − ρg) =
z

ρg
(ρ� − ρg), we have:

h(ρ, z) = a2 ln
( p

a2

)
+ p

ρ� − ρg

ρ� ρg
·

By definition of ρg, i.e. ρg = p/a2, we thus get:

h(ρ, z) = a2

[
ln

( p

a2

)
+

ρ� − p/a2

ρ�

]
= hp(p).

Taking the derivative of this relation yields the desired expression for h′
p and, since hp is continuously differen-

tiable in [p1, p2], the existence of p1,2 follows by Lagrange’s theorem. �
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Proposition 3.9. Let the density of the liquid phase be constant, let the gas phase obey the ideal gas law and
let F(ρ, z) be the corresponding volumetric free energy of the mixture, defined by (3.2). Let C be the convex
set defined by (3.3) and let (ρK)K∈M, (yK)K∈M and (zK)K∈M be such that, ∀K ∈ M, (ρK , ρKyK) ∈ C,
(ρK , zK) ∈ C, and the following relation is satisfied:

|K|
δt

(ρK yK − zK) +
∑

σ=K|L
G+

σ,K g(yK , yL) − G−
σ,K g(yL, yK) = 0 (3.16)

where g corresponds to an approximation of ϕ(y) = max[ y (1 − y), 0 ] by a monotone numerical flux function,
G+

σ,K = max(Gσ,K , 0), G−
σ,K = −min(Gσ,K , 0) and Gσ,K is given by the relation (3.15). Then, if g(yK , yL) ≥ 0

for all σ ∈ Eint, σ = K|L, there exists a discretization for the term:[
αg (1 − αg)

λρ
(ρg − ρ�)

]
σ

in (3.15) such that the following stability estimate holds:

1
δt

∑
K∈M

|K| [F(ρK , ρK yK) −F(ρK , zK)] ≤ 0

which means that the drift term is dissipative with respect to the entropy of the system.

Proof. We multiply equation (3.16) by ∂zF(ρK , ρK yK) and sum up over the control volumes of the mesh:

∑
K∈M

h(ρK , ρK yK)

⎡⎣ |K|
δt

(ρK yK − zK) +
∑

σ=K|L

[
G+

σ,K g(yK , yL) − G−
σ,K g(yL, yK)

]⎤⎦ = T1 + T2 = 0

where T1 and T2 read:

T1 =
∑

K∈M

|K|
δt

h(ρK , ρK yK) [ρK yK − zK ]

T2 =
∑

K∈M
h(ρK , ρK yK)

⎡⎣ ∑
σ=K|L

[
G+

σ,K g(yK , yL) − G−
σ,K g(yL, yK)

]⎤⎦.

Since the function F is convex, we have:

T1 ≥ 1
δt

∑
K∈M

|K| [F(ρK , ρK yK) −F(ρK , zK)]. (3.17)

Let us turn to T2. Reordering the sum, we get:

T2 =
∑

σ∈Eint

|σ| ρσ,up gup(yK , yL, ur)
[
αg (1 − αg)

λρ
(ρg − ρ�)

]
σ

(pL − pK) [h(ρK , ρK yK) − h(ρL, ρL yL)]

where gup(yK , yL, ur) = g(yK , yL) if ur · nKL ≥ 0 and gup(yK , yL, ur) = g(yL, yK) otherwise; in any case, we
have, by assumption, gup(yK , yL, ur) ≥ 0. We now choose, for the approximation of the quantity defined on σ
in the preceding relation, an expression of the form:[

αg (1 − αg)
λρ

(ρg − ρ�)
]

σ

≡ (αg)σ [1 − (αg)σ]
λρσ

(�g(pσ) − ρ�)
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where (αg)σ and ρσ stand for approximations of the void fraction and the density on σ, respectively, which are
only assumed to be non-negative. Applying Lemma 3.8, T2 reads:

T2 =
∑

σ∈Eint

|σ| ρσ,up gup(yK , yL, ur)
(αg)σ (1 − αg)σ

λρσ
ρ� �g(pσ) h′

p(pσ) (pK − pL) [hp(pK) − hp(pL)].

If pK = pL, the term associated to K|L in this sum vanishes. Otherwise, from the third assertion of Lemma 3.8,
there exists pσ ∈ [min(pK , pL), max(pK , pL)] such that the product h′

p(pσ) (pK − pL) [hp(pK) − hp(pL)] is
positive. Since we choose (αg)σ such that (αg)σ ≥ 0, all the other quantities are positive, and this concludes
the proof. �

The following proposition extends the stability result of the preceding section to the case ur 
= 0.

Proposition 3.10 (stability of the scheme, Darcy case). Let the density of the liquid phase be constant, let
the gas phase obey the ideal gas law and let F(ρ, z) be the corresponding volumetric free energy of the mixture,
defined by (3.2). We suppose that the density ρn is positive and the gas mass fraction yn belongs to the interval
(0, 1]. Let ũn+1, un+1, pn+1, zn+1, ρn+1 and yn+1 be a solution to the equations of one time step of the scheme,
i.e. (2.8), (2.11), (2.7), (2.12) and (2.13), with a zero forcing term. We suppose that the drift velocity is given by
a the Darcy-like relation (1.7) and that the discretization of the correction step for the gas mass fraction yn+1

is such that the stability result of Proposition 3.9 applies. Then the following inequality holds:

1
2
||un+1||2h,ρn +

∫
Ω

F(ρn+1, ρn+1yn+1) dx + δt ad(ũn+1, ũn+1) +
δt2

2
|pn+1|2h,ρn

≤ 1
2
||un||2h,ρn−1 +

∫
Ω

F(ρn, ρnyn) dx +
δt2

2
|pn|2h,ρn .

Proof. Proposition 3.9 yields:

1
δt

∑
K∈M

|K| [F(ρn+1
K , ρn+1

K yn+1
K ) −F(ρn+1

K , zn+1
K )

] ≤ 0.

The conclusion thus follows by summing this relation with the estimate of Proposition 3.6. �

Finally, note that, as in the preceding section, this partial stability result yields the same entropy decrease
estimate for the whole scheme as in the preceding section if a renormalization step for the pressure is added to
the scheme.

Remark 3.11 (on the choice of the monotone numerical flux function). As stated in Section 2, we have adopted
for the numerical tests presented hereafter the following flux-splitting formula:

g(a1, a2) = g1(a1) + g2(a2)

where g1(a1) = a1 if a1 ∈ [0, 1] and zero otherwise and and g2(a2) = −(a2)2 if a2 ∈ [0, 1] and zero otherwise. This
numerical monotone flux does not satisfy the hypothesis of Proposition 3.10, as it is not always non-negative.
However, several other choices are possible for the numerical flux function g (see e.g. [13]), and some of them
solve this problem. Thanks to the fact that ϕ(s) = s (1 − s) is positive ∀s ∈ [0, 1], it is the case, for example,
for the flux obtained with a one-dimensional Godunov scheme for each interface:

g(a1, a2) =
∣∣∣∣ max{ϕ(s), a2 ≤ s ≤ a1} if a2 ≤ a1

min{ϕ(s), a1 ≤ s ≤ a2} if a1 ≤ a2.
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Figure 2. Error for the velocity at t = 0.5, as a function of the time step (L2 norm).

4. Numerical results

This section is devoted to numerical tests of the proposed scheme. We first address a problem built in such
a way that it admits an analytical solution, to assess the convergence properties of the scheme. Then several
additional tests are performed, to check the stability of the algorithm and the quality of the results.

4.1. Assessing the convergence against an analytic solution

We address here a problem built by the so-called technique of manufactured solutions: the computational
domain and the solution are chosen a priori and the initial conditions, the boundary conditions and the forcing
terms are adjusted consequently. Let thus the computational domain be Ω = (0, 1) × (−1/2, 1/2), and the
density and the momentum take the following expressions:

ρ = 1 +
1
4

sin(πt) [cos(πx1) − sin(πx2)] ρ u = −1
4

cos(πt)
[

sin(πx1)
cos(πx2)

]
.

The pressure and the partial gas density are linked to the density by the equation of state (2.5), where the
liquid density ρ� is set at ρ� = 5 and the quantity a2 in the equation of state of the gas (1.5) is given by a2 = 1
(so ρg = p). We choose the following expression for the unknowns y and z:

y =
2.5 − 0.5 ρ

4.5 ρ
z = ρ y =

2.5 − 0.5 ρ

4.5
·

The relative velocity is constant and given by ur = (0, 1)t and the diffusive coefficient D is set to D = 0.1. The
analytical expression for the pressure is obtained from the equation of state (i.e. relation (3.1)). These functions
satisfy the mass balance equation; for the gas mass fraction and momentum balance, we add the corresponding
right-hand side. In this latter equation, we suppose that the divergence of the stress tensor is given by:

∇ · τ(u) = μ Δu +
μ

3
∇∇ · u, μ = 10−2

and we use for the viscous term the corresponding form for the bilinear form ad (see Sect. 2.3).



270 L. GASTALDO ET AL.

1.e-3 1.e-2 1.e-11.e-4
Time step

1.e-4

1.e-3

1.e-2
E

rr
or

 n
or

m

Mesh 20x20
Mesh 40x40
Mesh 80x80

Figure 3. Error for the pressure at t = 0.5, as a function of the time step (discrete L2 norm).
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Figure 4. Error for the gas mass fraction at t = 0.5, as a function of the time step (discrete
L2 norm).

Errors for the velocity, pressure and gas mass fraction obtained at t = 0.5, as a function of the time step and
for various meshes, are drawn in Figures 2, 3 and 4, respectively. These errors are evaluated in the L2 norm for
the velocity and in the discrete L2 norms for the pressure and the gas mass fraction. Computations are made
with 20 × 20, 40 × 40 and 80 × 80 uniform meshes (so with square cells and the Rannacher-Turek element).
For large time steps, these curves show a decrease corresponding to approximately a first order convergence
in time, until a plateau is reached, due to the fact that errors are bounded by below by the residual spatial
discretization error. The value of the errors on this plateau then show a spatial convergence order close to one,
which is consistent with the choice of an upwind discretization for the advection terms in the mass and gas mass
fraction balance equations.
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Figure 5. Sloshing in cavity: analytical solution and numerical solution with μ = ρ/100.

4.2. Two-dimensional sloshing in cavity

Two layers of non-miscible fluids (air and water) are superimposed with the lighter one on top of the heavier
one. The gravity (with g = 9.81 m·s−2) is acting in the vertical downward direction. The length of the
rectangular cavity is L = 1 m, the height of each layer is respectively h� = 1 m and hg = 1.25 m, so the total
height of the box is 2.25 m. The water and air densities are respectively ρ� = 1000 kg·m−3 and ρg = p/a2 where
a2 is such that ρg = 1.2 kg·m−3 at p = 105 Pa. The diffusion coefficient D and the drift velocity are set to zero.
A perfect slip condition is imposed on the whole boundary. At initial time, both fluids are at rest, then the
cavity is submitted to an horizontal acceleration given by a0 = 0.1 m·s−2.

In the case where both fluids are supposed incompressible and the convection and diffusion terms may be
neglected, an analytical solution for the flow in a rectangular cavity is provided in [6]. In particular, the shape
of the interface is given by the following relation:

ξ =
a0

g

⎡⎣x − L

2
+

∑
n≥0

4
L k2

2n+1

cos(ω2n+1 t) cos(k2n+1 t)

⎤⎦
where the wave number kn is defined by:

kn =
2 π n

L
and ωn is given by:

ω2
n =

g kn (ρ� − ρg)
ρg coth(kn hg) + ρ� coth(kn h�)

·
In practice, to compute this analytical solution, we perform the summation up to n = 200.

So as to remain in the domain of validity of the solution, the amplitude of the fluid oscillations must be
very small; hence a very fine mesh is necessary near the free surface, to capture its motion. The mesh is thus
made of about 41 000 rectangular cells (with the Rannacher-Turek element) and, in the vertical direction, the
space step is adapted in such a way that it is smaller near the interface between the two phases and equal
to δx2 = 0.0005 m, and increases when moving away the free surface, up to δx2 = 0.05 m at the top and
bottom sections. In the horizontal direction, the mesh is uniform with step size δx1 = 1/70 m. Calculations
with different viscosities have been performed, these latter being supposed to vary with the mixture density:
μ = ρ/100, μ = ρ/1000, μ = ρ/10 000.
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Figure 6. Sloshing in cavity: analytical solution and numerical solution with μ = ρ/1000.
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Figure 7. Sloshing in cavity: analytical solution and numerical solution with μ = ρ/10 000.

The numerical results are reported on Figure 5 (μ = ρ/100), Figure 6 (μ = ρ/1000), and Figure 7 (μ =
ρ/10 000) respectively. Comparing the obtained shape for the interface with the analytical solution, we observe
that the numerical solution is closer to the analytical one with μ = ρ/1000 than with μ = ρ/100, certainly
because the fluid is too viscous in this latter case. More surprisingly, when reducing the viscosity to μ = ρ/10 000,
the numerical solution also becomes less accurate. Our explanation is that, to obtain a good solution, it is
necessary to respect a balance between approaching the physical problem (which, in this case, would suggest
μ = 0) and keeping sufficient coercivity to ensure a reasonable convergence of the numerical approximation
(which, on the contrary, requires a high value for the viscosity). With a more refined mesh, viscosity thus
probably could be decreased, and the solution be closer to the analytical one. However, with this mesh already,
results seem to be rather more accurate than those available in the literature [6].
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Figure 8. Bubble column: geometry of the problem and void fraction at times 2 s, 4 s and 40 s.

4.3. Bubble column

We address in this section a classical benchmark for diphasic flow solvers, namely the flow in a pseudo two
dimensional bubble column investigated experimentally by Becker et al. [4]. The apparatus has a rectangular
cross section with the following dimensions: its width is L = 50 cm, its depth is 8 cm and it is H = 200 cm
high (see Fig. 8). It is filled with water up to the height h = 150 cm. A gas sparger, positioned 15 cm from the
left wall, is used to introduce an air flow of q = 8 L·min−1 into the system. The circular sparger has a diameter
of 40 mm and a pore size of 40 μm. Several liquid circulation cells can be observed in the column, the location
and size of which continuously change. The bubble swarm is influenced by these vortices and therefore rises
in a meander-like way. The direction of its lower part is stable and directed towards the nearest sidewall; its
upper part changes its shape and location in a quasiperiodic way, according to transient liquid circulations [31].

To simulate this experiment, we choose the following data. The boundary conditions are defined at the inlet
as follows:

uimp =
q

S αg,imp

where S is the gas inlet area and αg,imp = 1 is the void fraction imposed at the inlet. Along the walls and at the
outlet of the column, homogeneous Dirichlet conditions are used for the velocity. Initial conditions are set to
u = 0 m·s−1 and p = p0 where p0 = 105 Pa is the ambient pressure. The density of the liquid is ρ� = 1000 kg·m−3;
the gas obeys an ideal gas equation of state ρg = p/a2, where a2 is such that ρg = 1.2 kg·m−3 at p = 105 Pa.
The diffusion coefficient D is set to zero, the drift velocity is constant and given by ur = (0, 0.2)t m·s−1.

For this test case, we use a regular mesh composed of rectangular cells (with the Rannacher-Turek element)
with 76 cells in the horizontal direction, out of which 4 are for the gas inlet, and 300 in the vertical one.
Calculations with time steps up to δt = 10−1 s have been performed, observing that smaller time steps yield a
thinner free surface.
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The viscosity is a parameter which is difficult to adjust, since, in this simulation which is based on the system
of equations governing a laminar flow, it must represent in some way the turbulent diffusion, i.e. the effects
of fluctuations of the flow at microscopic scales, which may originate from the usual turbulence phenomena
(sometimes termed “monophasic turbulence”) and from the perturbation of the velocity field due to the motion of
the bubbles (sometimes termed “diphasic turbulence”). Calculations with a viscosity ranging from μ = 10−3 Pa·s
to μ = 102 Pa·s have been performed. With smaller viscosities, we observe more oscillations of the free surface,
the bubble swarm reaches the free surface faster and is farther from the sidewall.

Finally, the numerical results obtained with δt = 10−2 s and a viscosity of μ = 1 Pa·s are reported on Figure 8.
With this value of the viscosity and these mesh and time steps, numerical convergence seems to be reached, at
least visually. One can observe the stability and the thinness of the free surface. Results qualitatively reproduce
the expected behaviour, which is the best we can hope with the rather crude modelling of turbulence which we
adopted.

5. Conclusion

In this paper, we address the drift-flux model, which, for isothermal flows, consists in a system of three balance
equations, namely the overall mass balance, the gas mass balance and the momentum balance, complemented
by an equation of state and a phenomenologic relation for the drift velocity.

For this problem, we develop a pressure correction scheme with a finite element – finite volume space dis-
cretization. The existence of a solution to each step of the algorithm is proven. Essential stability properties
of the continuous problem still hold at the discrete level: the unknowns are kept within their physical bounds
(in particular, the gas mass fraction remains in the [0, 1] interval); in the homogeneous case (i.e. when the drift
velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity
the Darcy-like relation suggested in [22], the drift term is dissipative. Since, when the density is constant,
this fractional step algorithm degenerates to a usual incremental projection method based on an inf-sup sta-
ble approximation, stability can be expected in the zero Mach number limit. Finally, the present algorithm
preserves a constant pressure and a constant velocity through moving interfaces between phases (i.e. contact
discontinuities of the underlying hyperbolic system). To achieve this latter goal, the key ingredient is to couple
the mass balance and the transport terms of the gas mass balance in an original pressure correction step.

We chose in this paper to only consider the case of a constant density liquid phase and of a gaseous phase
obeying the ideal gas law. Dealing with a more general barotropic gas phase is certainly the simplest generaliza-
tion, and the present theory also extends to the case of a compressible liquid with minor modifications [18]: for
the stability study, essentially, the expression for the volumetric free energy of the mixture has to be replaced
by the usual expression applying when both phases are compressible, see for instance [22]; the existence theory
is simpler, since an upper bound for the density would provides an estimate for the pressure. Returning to
the case of an incompressible fluid, extending the present theory to deal with pure liquid zones appears on the
contrary to be a difficult task, since the role played by the pressure in such a system seems to deserve some
clarifications. Ongoing research also concerns the extension of the present analysis to homogeneous models
including an energy balance equation.

Numerical tests show a near-first-order convergence in space and time, consistent with the implemented
discretization: first order backward Euler method in time and standard upwinding of the convection terms in
the mass and gas mass fraction balance equations. With respect to this latter point, using more accurate space
discretization (typically, MUSCL-like techniques) should certainly be desirable.

To assess the robustness of this algorithm, various numerical tests have been performed. They show in par-
ticular that free surface flows are computed without any instability, keeping a rather sharp interface throughout
the computation. In addition, pure monophasic liquid zones are supported, although, as already mentioned,
this case remains beyond the scope of the theory developed here. Tests are currently being performed on the
Sod test case, and first results seem to show that shock solutions may be correctly approximated. This scheme
is now implemented in the TOPASE code developed at IRSN and daily used for industrial applications.
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A. Appendix: A discrete renormalization inequality for a system

of transport equations

Let ρ and z satisfy:

∂tρ + ∇ · (ρu) = 0 (A.1)

∂tz + ∇ · (zu) = 0 (A.2)

where u is a given velocity supposed to vanish at the boundary. These equations are discretized by an upwind
finite volume scheme, and the aim of this section is to prove a discrete analog of the formal identity, for a regular
function F :

−
∫

Ω

[
ρ ∂ρF + z ∂zF − F] ∇ · u dx =

d
dt

∫
Ω

F(ρ, z) dx. (A.3)

This result is used to prove the existence of a solution to the scheme, together with its stability (see Lem. 3.5).
The formal computation which allows to derive this relation in the continuous setting is the following. Multi-
plying equation (A.1) by ∂ρF , equation (A.2) by ∂zF and finally summing these relations, we obtain:

∂ρF [∂tρ + ∇ · (ρu)] + ∂zF [∂tz + ∇ · (zu)] = 0

which yields:
∂tF(ρ(x, t), z(x, t)) + ∂ρF ∇ · (ρu) + ∂zF ∇ · (zu) = 0.

Developing the divergence terms, we get:

∂tF(ρ(x, t), z(x, t)) + u · [∂ρF ∇ρ + ∂zF ∇z] + ∇ · u [ρ ∂ρF + z ∂zF ] = 0. (A.4)

The second term of this relation is equal to u · ∇F(ρ(x, t), z(x, t)). Adding and subtracting F ∇ · u, we thus
have:

∂tF(ρ(x, t), z(x, t)) + ∇ · (F(ρ(x, t), z(x, t))u) + ∇ · u [ρ ∂ρF + z ∂zF − F ] = 0. (A.5)
Since the integral of ∇ · (F(ρ(x, t), z(x, t))u) over the computational domain is zero thanks to the fact that the
velocity is supposed to vanish at the boundary, this equation is the relation we are seeking.

We are going now to reproduce this computation at the discrete level.

Theorem A.1. Let C be an open convex subset of R
2 and F be a convex continuously differentiable function

from C to R. We suppose that (ρK)K∈M, (ρ∗K)K∈M, (zK)K∈M and (z∗K)K∈M are four families of real numbers
such that, ∀K ∈ M, (ρK , zK) ∈ C, (ρ∗K , z∗K) ∈ C and the following relations hold:∣∣∣∣∣∣∣∣∣

|K|
δt

(ρK − ρ∗K) +
∑

σ=K|L
vσ,K ρσ = 0

|K|
δt

(zK − z∗K) +
∑

σ=K|L
vσ,K zσ = 0

(A.6)

where ρσ and zσ are given by ρσ = ρK and zσ = zK if vσ,K ≥ 0, ρσ = ρL and zσ = zL otherwise. Then the
following estimate holds:

∑
K∈M

−pK

⎡⎣ ∑
σ=K|L

vσ,K

⎤⎦ ≥
∑

K∈M
|K| F(ρK , zK) −F(ρ∗K , z∗K)

δt
,

where the family of real numbers (pK)K∈M is given by:

∀K ∈ M, pK = ρK ∂ρF(ρK , zK) + zK ∂zF(ρK , zK) −F(ρK , zK).
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Proof. Let us multiply the first relation of (A.6) by ∂ρF , the second one by ∂zF , both being evaluated
at (ρK , zK), and sum:

|K|
δt

[(ρK − ρ∗K)∂ρF(ρK , zK) + (zK − z∗K)∂zF(ρK , zK)]︸ ︷︷ ︸
T∂/∂t

+ ∂ρF(ρK , zK)
∑

σ=K|L
vσ,K ρσ + ∂zF(ρK , zK)

∑
σ=K|L

vσ,K zσ︸ ︷︷ ︸
Tdiv,K

= 0.
(A.7)

The second term of the previous relation, Tdiv,K , can be recast as:

Tdiv,K = ∂ρF(ρK , zK)

⎡⎣ ∑
σ=K|L

vσ,K (ρσ − ρK) + ρK

∑
σ=K|L

vσ,K

⎤⎦
+ ∂zF(ρK , zK)

⎡⎣ ∑
σ=K|L

vσ,K (zσ − zK) + zK

∑
σ=K|L

vσ,K

⎤⎦. (A.8)

This relation is the discrete equivalent to equation (A.4): up to the multiplication by 1/|K|, the first summations
in the first term and the second term at the right-hand-side are the analogues of u · ∇ρ and u · ∇z respectively,
while the second summations are the analogues of ρ∇ · u and z ∇ · u respectively. Adding and subtracting
F(ρK , zK), we obtain a discrete equivalent of relation (A.5):

Tdiv,K = ∂ρF(ρK , zK)
∑

σ=K|L
vσ,K (ρσ − ρK)

+ ∂zF(ρK , zK)
∑

σ=K|L
vσ,K (zσ − zK) + F(ρK , zK)

∑
σ=K|L

vσ,K

+ [ρK ∂ρF(ρK , zK) + zK∂zF(ρK , zK) −F(ρK , zK)]
∑

σ=K|L
vσ,K .

In the last term, we recognize, as in the continuous setting, pK

∑
σ=K|L vσ,K . The process will be completed

if we put the first three terms of the right-hand-side in the divergence form. To this end, let us sum up the
term Tdiv,K over K ∈ M and reorder the summation:

∑
K∈M

Tdiv,K =
∑

K∈M
pK

⎡⎣ ∑
σ=K|L

vσ,K

⎤⎦ +
∑

σ∈Eint

Tdiv,σ (A.9)

where, if σ = K|L:

Tdiv,σ = vσ,K

[
∂ρF(ρK , zK)(ρσ − ρK) + ∂zF(ρK , zK)(zσ − zK) + F(ρK , zK)

− ∂ρF(ρL, zL)(ρσ − ρL) − ∂zF(ρL, zL)(zσ − zL) −F(ρL, zL)
]
.

In this relation, there are two possible choices for the orientation of σ, i.e. K|L or L|K; we choose this orientation
in order to have vσ,K ≥ 0. The function (ρ, z) 
→ F(ρ, z) is by assumption continuously differentiable and convex
on the convex set C containing both (ρK , zK) and (ρL, zL), so the technical Lemma A.2 hereafter applies and
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there exists (ρ̄σ, z̄σ) in the segment [(ρK , zK), (ρL, zL)] (itself included in C) such that:∣∣∣∣∣∣∣∣∣∣∣∣∣

if (ρK , zK) 
= (ρL, zL):

∂ρF(ρK , zK)(ρ̄σ − ρK) + ∂zF(ρK , zK)(z̄σ − zK) + F(ρK , zK)

= ∂ρF(ρL, zL)(ρ̄σ − ρL) + ∂zF(ρL, zL)(z̄σ − zL) + F(ρL, zL)

otherwise: (ρ̄σ, z̄σ) = (ρK , zK) = (ρL, zL).

(A.10)

By definition, the choice (ρσ, zσ) = (ρ̄σ, z̄σ) is such that the term Tdiv,σ vanishes, which means that the first
three terms at the right-hand-side of equation (A.8) are a conservative approximation of the quantity ∇ · (fu)
appearing in equation (A.5), with the following expression for the flux:

Fσ,K = Fσ vσ,K , with:

Fσ = ∂ρF(ρK , zK)(ρ̄σ − ρK) + ∂zF(ρK , zK)(z̄σ − zK) + F(ρK , zK)

= ∂ρF(ρL, zL)(ρ̄σ − ρL) + ∂zF(ρL, zL)(z̄σ − zL) + F(ρL, zL).

Then the term Tdiv,σ can be rewritten as:

Tdiv,σ = vσ,K (ρσ − ρ̄σ)
[
∂ρF(ρK , zK) − ∂ρF(ρL, zL)

]
+ vσ,K (zσ − z̄σ)

[
∂zF(ρK , zK) − ∂zF(ρL, zL)

]
.

With the orientation taken for σ, an upwind choice yields:

Tdiv,σ = vσ,K (ρK − ρ̄σ)
[
∂ρF(ρK , zK) − ∂ρF(ρL, zL)

]
+ vσ,K (zK − z̄σ)

[
∂zF(ρK , zK) − ∂zF(ρL, zL)

]
and, by the inequality of Lemma A.2 hereafter, Tdiv,σ can be seen to be non-negative. Let us now turn to T∂/∂t.
As the function (ρ, z) 
→ F(ρ, z) is convex on the convex set C and both (ρK , zK) and (ρ∗K , z∗K) belong to C,
we have:

T∂/∂t ≥ |K| F(ρK , zK) −F(ρ∗K , z∗K)
δt

· (A.11)

Then, summing for K ∈ M and using relations (A.7), (A.9) and (A.11) concludes the proof. �

In the course of the preceding proof, we used the following technical lemma.

Lemma A.2. Let C be an open convex subset of R
2, F be a convex continuously differentiable function from C

to R and (ρ1, z1) and (ρ2, z2) be two distinct elements of C. Then there exists ζ ∈ [0, 1] such that (ρ̄, z̄) =
(1 − ζ) (ρ1, z1) + ζ (ρ2, z2) satisfies the following relation:

F(ρ1, z1) + ∂ρF(ρ1, z1)(ρ̄ − ρ1) + ∂zF(ρ1, z1)(z̄ − z1) =F(ρ2, z2) + ∂ρF(ρ2, z2)(ρ̄ − ρ2)

+ ∂zF(ρ2, z2)(z̄ − z2). (A.12)

In addition, the following inequality holds:

T = (ρ1 − ρ̄)
[
∂ρF(ρ1, z1) − ∂ρF(ρ2, z2)

]
+ (z1 − z̄)

[
∂zF(ρ1, z1) − ∂zF(ρ2, z2)

] ≥ 0.

Proof. Let us consider the function g defined by:

ζ 
→ F((1 − ζ) (ρ1, z1) + ζ (ρ2, z2)).
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By assumption, the function g is defined over [0, 1], convex and continuously differentiable. Moreover, it may
be checked that equation (A.2) equivalently reads:

g(0) + g′(0) ζ = g(1) + g′(1) (ζ − 1)

or, reordering terms:
[g′(1) − g′(0)] ζ = g(0) − (g(1) − g′(1)).

Since g is convex, if g′(1) = g′(0), the function g is affine and g(0) − (g(1) − g′(1)) vanishes, so the preceding
relation is satisfied with any value of ζ. Otherwise, the preceding relation allows to compute ζ and, still by
convexity of g, both g′(1) − g′(0) and g(0) − (g(1) − g′(1)) are positive, and so is ζ. Still in this second case,
this relation equivalently reads:

[g′(1) − g′(0)] (ζ − 1) = g(0) + g′(0) − g(1)

which, as g(0)+ g′(0)− g(1) is negative, shows that ζ ≤ 1. Finally, the quantity T simply reads ζ [g′(1) − g′(0)],
and is thus non-negative. �

Remark A.3. From the above computation, it appears that the choice of ρ̄σ and z̄σ defined by equation (A.10),
for the convective terms equations (A.1) and (A.2), is convenient to obtain an exact (i.e. without any dissipation)
discrete counterpart of the continuous identity (A.3).

B. Appendix: Existence of a solution to a class of discrete diphasic problems

We address in this section the following abstract discrete problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a(u, ϕ(i)
σ ) −

∫
Ω,h

p ∇ · ϕ(i)
σ dx =

∫
Ω

π · ϕ(i)
σ dx, ∀σ ∈ Eint, 1 ≤ i ≤ d

|K|
δt

[� p,z(pK , zK) − � p,z(p∗K , z∗K)] +
∑

σ=K|L
v+

σ,K� p,z(pK , zK) − v−
σ,K� p,z(pL, zL) = 0, ∀K ∈ M

|K|
δt

(zK − z∗K) +
∑

σ=K|L
v+

σ,K zK − v−
σ,K zL = 0, ∀K ∈ M.

(B.1)

This problem is supposed to be obtained from (part of) a continuous problem by a space discretization combining
Rannacher-Turek or Crouzeix-Raviart finite elements and finite volumes; notations related to discrete quantities
are given in Section 2.2 and are not recalled here. The bilinear form a is only assumed to be such that
||u||a = [a(u, u)]1/2 defines a norm over the discrete space Wh. The quantities (v+

σ,K)n+1 and (v−
σ,K)n+1 stands

respectively for max(vn+1
σ,K , 0) and −min(vn+1

σ,K , 0) with vn+1
σ,K = |σ|un+1

σ · nKL. Note that, in the last two
equations, the flux summation excludes the external edges, which implicitly expresses the fact that the velocity
is supposed to vanish on the boundary.

This system must be completed by three equations of state. The first two ones give the liquid density ρ� and
the gas density ρg as a function of the pressure: we suppose here that the density of the liquid is constant and
that the gas obeys the equation of state of ideal gases, which, for the sake of conciseness, we suppose here to be
simply ρg = p. The last equation relates the mixture density ρ with the gas mass fraction y or the gas partial
density z = ρ y and the phases density, and may take the three following forms:

p = ℘(ρ, z) =
z ρ�

z + ρ� − ρ
ρ = � p,z(p, z) = ρ� + z

(
1 − ρ�

p

)
ρ = � p,y(p, y) =

1
1 − y

ρ�
+

y

p

·

(B.2)
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These three relations are equivalent as soon as the following assumptions for the unknowns of this system are
satisfied:

ρ > 0, p > 0, z > 0 and 0 < y ≤ 1. (B.3)
These assumptions are natural, except for the hypothesis that y or z does not vanish, which excludes the
existence of purely liquid zones. This latter assumption is assumed to hold for the initial quantities, i.e. we
suppose that:

∀K ∈ M, y∗
K =

z∗K
ρ∗K

∈ (0, 1] (B.4)

where ρ∗K = � p,z(p∗K , z∗K).
Our aim in this section is to prove that there exists a solution to system (B.1) complemented with one of the

relations of (B.2), under the assumption (B.4), and that any such solution satisfies the inequalities (B.3).

We begin this section with two preliminary lemmas.

Lemma B.1. Let (x∗
K)K∈M and (xK)K∈M be two families of real numbers satisfying the following set of

equations:

∀K ∈ M,
|K|
δt

(xK − x∗
K) +

∑
σ=K|L

[
v+

σ,K xK − v−
σ,K xL

]
= 0.

We suppose that, ∀K ∈ M, x∗
K > 0. Let ||∇h · u||∞ be defined by:

||∇h · u||∞ = max
K∈M

[
0,

1
|K|

∑
σ=K|L

vσ,K

]
.

Then, ∀K ∈ M, xK satisfies:

min
K∈M

x∗
K

1 + δt ||∇h · u||∞ ≤ xK ≤ 1
min

K∈M
|K|

∑
K∈M

|K| x∗
K .

Proof. The first inequality follows from an application of the discrete maximum principle lemma which can
be found in [16] (Lem. 2.5, Sect. 2.3). The second one then follows from the fact that, by conservativity,∑

K∈M xK =
∑

K∈M x∗
K , remarking that, by the preceding relation, the values xK , for K ∈ M, are all

positive. �
The proof of the following result can be found in [25].

Lemma B.2. Let (ρ∗K)K∈M, (x∗
K)K∈M, (ρK)K∈M and (xK)K∈M be four families of real numbers satisfying

the following set of equations:

∀K ∈ M,
|K|
δt

(ρK xK − ρ∗K x∗
K) +

∑
σ=K|L

v+
σ,K ρK xK − v−

σ,K ρL xL = 0.

We suppose that, ∀K ∈ M, ρ∗K > 0, ρK > 0 and:

∀K ∈ M,
|K|
δt

(ρK − ρ∗K) +
∑

σ=K|L
v+

σ,K ρK − v−
σ,K ρL = 0.

Then the following discrete maximum principle holds:

∀K ∈ M, min
L∈M

x∗
L ≤ xK ≤ max

L∈M
x∗

L.
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We now state the abstract theorem which will be used hereafter; this result follows from standard arguments
of the topological degree theory (see [9] for an overview of the theory and e.g. [12,16] for other uses in the same
objective as here, namely the proof of existence of a solution to a numerical scheme).

Theorem B.3 (a result from the topological degree theory). Let N and M be two positive integers and V be
defined as follows:

V = {(x, y, z) ∈ R
N × R

M × R
M such that y > 0 and z > 0}

where, for any real number c and vector y, the notation y > c means that each component of y is greater
than c. Let b ∈ R

N × R
M × R

M and f and F be two continuous functions respectively from V and V × [0, 1]
to R

N × R
M × R

M satisfying:

(i) F (·, 1) = f(·);
(ii) ∀θ ∈ [0, 1], if an element v of Ō (the closure of O) is such that F (v, θ) = b, then v ∈ O, where O is

defined as follows:

O = {(x, y, z) ∈ R
N × R

M × R
M s.t. ‖x‖ < M and ε < y < M and ε < z < M}

with M and ε two positive constants and ‖ · ‖ a norm defined over R
N ;

(iii) the topological degree of F (·, 0) with respect to b and O is equal to d0 
= 0.

Then the topological degree of F (·, 1) with respect to b and O is also equal to d0 
= 0; consequently, there exists
at least a solution v ∈ O such that f(v) = b.

We are now in position to prove the existence of a solution to the considered discrete system.

Theorem B.4 (existence of a solution). Under the assumption (B.4), the nonlinear system (B.1) complemented
with the relation (B.2) admits at least one solution, and any possible solution is such that:

∀K ∈ M, ρK > 0, zK > 0, 0 < yK =
zK

ρK
≤ 1, pK > 0

Proof. This proof makes use of Theorem B.3 twice, by linking the initial problem (B.1) to a linear one through
two successive homotopies. Let N = d card(Eint) and M = card(M); we identify the finite element velocity
space with R

N and the finite volume space of pressure and partial density with R
M . Let V be defined by

V = {(u, p, z) ∈ R
N × R

M × R
M such that p > 0 and z > 0}.

Step 1. First homotopy
We consider the function F : V × [0, 1] → R

N × R
M × R

M given by:

F (u, p, z, θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vσ,i = a(u, ϕ(i)
σ ) −

∫
Ω,h

p ∇ · ϕ(i)
σ dx −

∫
Ω

π · ϕ(i)
σ dx, σ ∈ Eint, 1 ≤ i ≤ d

qK =
|K|
δt

[� p,z
θ (pK , zK) − � p,z

θ (p∗K , z∗K)]

+
∑

σ=K|L
v+

σ,K � p,z
θ (pK , zK) − v−

σ,K � p,z
θ (pL, zL), K ∈ M

sK =
|K|
δt

[zK − � p,z
θ (p∗K , z∗K) y∗

K ] +
∑

σ=K|L
v+

σ,K zK − v−
σ,K zL, K ∈ M

(B.5)
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where the function � p,z
θ is implicitly defined by the following relation:

� p,z
θ (p, z) = � p,y

θ (p, y) =
1

1 − y

��,θ(p)
+

y

p

with ��,θ(p) =
1

θ

ρ�
+

1 − θ

p

and z = ρ y.

Note that this definition makes sense (i.e. using z = ρy, the function � p,z can be explicitly computed from the
expression of � p,y) as soon as p > 0, and thus for any (u, p, z) ∈ V .

Solving the problem F (u, p, z, 1) = 0 is exactly the same as solving the system (B.1).
Let ε and M be two positive real numbers, and O be defined by:

O = {(u, p, z) ∈ R
N × R

M × R
M s.t. ||u||a < M, ε < p < M and ε < z < M}.

We now suppose that (u, p, z) ∈ Ō (and thus, in particular, p ≥ ε) and that F (u, p, z, θ) = 0 and provide
estimates for (u, p, z).

We begin by the following elementary bound, which is useful throughout the proof. From the definition
of ��,θ(p), we observe that min(ρ�, p) ≤ ��,θ(p) ≤ max(ρ�, p). In the same way, provided that y ∈ [0, 1],
min(��,θ(p), p) ≤ � p,z

θ (p, z) ≤ max(��,θ(p), p). Hence, min(ρ�, p) ≤ � p,z
θ (p, z) ≤ max(ρ�, p) and, thanks to

assumption (B.4):

∀θ ∈ [0, 1], ∀K ∈ M, � p,z
θ (p∗K , z∗K) ≤ ρ̄∗ with ρ̄∗ = max

[(
max
K∈M

p∗K

)
, ρ�

]
.

Step 1.1. || · ||a estimate for the velocity
Let us first recast the equation of state of the mixture under a more convenient form. Substituting its

definition for ��,θ(p) in � p,y
θ (p, y), we get:

ρ =
1

θ (1 − y)
��

+
y + (1 − θ)(1 − y)

p

=
1

1 − y′

��
+

y′

p

(B.6)

with y′(y, θ) = y + (1 − θ)(1 − y). Then, taking y = z/� p,z
θ (p, z) as unknown in the third equation of

F (u, p, z, θ) = 0, we get, for any K ∈ M:

|K|
δt

[� p,z
θ (pK , zK) yK − � p,z

θ (p∗K , z∗K) y∗
K ] +

∑
σ=K|L

v+
σ,K � p,z

θ (pK , zK) yK − v−
σ,K � p,z

θ (pL, zL) yL = 0.

As, by the second equation of F (u, p, z, θ) = 0, this relation vanishes for the constant function yK = 1, ∀K ∈ M,
we also obtain:

|K|
δt

[� p,z
θ (pK , zK) y′

K − � p,z
θ (p∗K , z∗K) (y′)∗K ] +

∑
σ=K|L

v+
σ,K � p,z

θ (pK , zK) y′
K − v−

σ,K � p,z
θ (pL, zL) y′

L = 0 (B.7)

where, by assumption (B.4), ∀K ∈ M, (y′)∗K = y∗
K + (1− θ)(1− y∗

K) ∈ (1− θ + θy∗, 1], with y∗ = minK∈M y∗
K .

We thus obtain a new problem, which keeps the structure of system (B.1), with the same equation of state
(i.e. relation (B.6)) and just a modified initial value for z (i.e. z∗K changed to � p,z

θ (p∗K , z∗K) (y′)∗K). The
unknown p is still an unknown of this new problem, and we thus have by assumption p ≥ 0. In addition, by
Lemma B.2, any solution of this new problem is such that the gas mass fraction verifies 1 − θ + θy∗ < y ≤ 1,
and thus the density and the gas partial density are positive. The unknowns thus belong to the domain where
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the free energy is correctly defined, and Theorem A.1 applies. Multiplying the first equation of F (u, p, z, θ) = 0
by uσ,i, summing over σ ∈ Eint, 1 ≤ i ≤ d and using Young’s inequality thus yields:

1
2
||u||2a +

1
δt

∑
K∈M

|K| � p,z
θ (pK , zK) y′

K ln(pK) ≤ 1
δt

∑
K∈M

|K| � p,z
θ (p∗K , z∗K) (y′)∗K ln(p∗K) +

1
2
||π||2−a

where || · ||−a stands for the dual norm of || · ||a with respect to the L2 inner product. The summation at the
right-hand-side of this relation is bounded by (1/δt) |Ω| ρ̄∗ ln(p̄∗) where p̄∗ = maxK∈M p∗K . By conservativity
of equation (B.7),

∑
K∈M |K| �θ(p∗K , z∗K) (y′)∗K ≤ |Ω| ρ̄∗. Since, by assumption, p ≥ ε, we thus get:

||u||2a ≤ 2
δt

|Ω| ρ̄∗ | ln(ε)| + 2
δt

|Ω| ρ̄∗ ln(p̄∗) + ||π||2−a .

For ε > 0 small enough, we thus have:
||u||a ≤ c1 | ln(ε)|1/2 (B.8)

where, in this relation and throughout the proof, we denote by ci a real number only depending on the data of
the problem, i.e. Ω, ρ̄∗, p̄∗, π, a, δt and the mesh, and the expression “ε small enough” stands for ε < c′1 where
c′1 is a positive real number itself only depending on the data.

Step 1.2. L∞ estimates for z

By equivalence of the norms over finite dimensional spaces, inequality (B.8) also yields a bound for u in the
L∞ norm and, finally, for ||∇h · u||∞:

||∇h · u||∞ ≤ c2 | ln(ε)|1/2.

By Lemma B.1, we thus get from the third relation of the system F (u, p, z, θ) = 0, still for ε small enough:

z ≥ c3 | ln(ε)|−1/2. (B.9)

On the other hand, we get from the same relation by conservativity:

z ≤ c4. (B.10)

Step 1.3. L∞ estimates for p

From the first relation of (B.2), using the bounds for z, we get:

p ≥ c5 | ln(ε)|−1/2. (B.11)

To obtain an upper bound for p, we first remark that, as the considered spatial discretization satisfies a discrete
inf-sup condition, a bound for u provides a bound for p−m(p) where m(p) stands for the mean value of p. By
equivalence of norms on finite dimensional spaces, we can choose to express this bound in the seminorm defined
by ∀q ∈ Lh, |q|1,1,h =

∑
σ∈Eint (σ=K|L) |qK − qL|. With this semi-norm, the mean value of p disappears, and we

get for ε small enough: ∑
σ∈Eint (σ=K|L)

|pK − pL| ≤ c6 | ln(ε)|1/2. (B.12)

An upper bound for p in one cell of the mesh, say K0, would then provide an upper bound for p, since, for any
K ∈ M, it is possible to build a path from K0 to K crossing each internal edge at most once. To obtain such
an estimate, we follow the following idea. If the pressure is somewhere lower than ρ�, we are done; otherwise,
with the chosen equation of state � p,z

θ , when θ varies, the liquid is everywhere denser than for θ = 1 and we
are going to show that, even if its total mass also increases, the volume that it occupies is lower than for θ = 1.
Hence, the remaining volume for the gas is bounded away from zero, and, by conservation of the gas mass,
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the pressure cannot blow up everywhere. First, we need to introduce the phase volumetric fractions. The
equation of state (B.2) can be written as:

ρ

p
+

ρ − z

ρ�
= 1

and, as ρ − z = ρ (1 − y) and y ≤ 1, both fractions at the left-hand-side of this relation are non-negative. We
may thus define αg ∈ [0, 1] and α� ∈ [0, 1], referred to as the gas and liquid volume fraction respectively, by:

αg =
ρ

p
α� =

ρ − z

ρ�
·

Note that αg + α� = 1. Combining the second and the third relation of the system F (u, p, z, θ) = 0, summing
over the control volumes of the mesh and remarking that the fluxes cancel by conservativity, we get:

∑
K∈M

|K| (α�)K =
∑

K∈M
|K| (1 − y∗

K) � p,z
θ (p∗K , z∗K)
ρ�

· (B.13)

Let us denote by (α∗
� )K,1 the liquid void fraction with the equation of state corresponding to θ = 1:

(α∗
� )K,1 =

1 − y∗
K

ρ�

[
y∗

K

p∗K
+

1 − y∗
K

ρ�

] ·
Exploiting the form (B.6) of the equation of state for θ 
= 0, we obtain from relation (B.13):

∑
K∈M

|K| (α�)K =
∑

K∈M
|K|(α∗

� )K,1

y∗
K

p∗K
+

1 − y∗
K

ρ�

(y′)∗K
p∗K

+
1 − (y′)∗K

ρ�

with (y′)∗K = y∗
K + θ(1 − y∗

K).

If we suppose that pK ≥ ρ�, the fraction in the above equation is bounded by 1: indeed, both the numerator
and the denominator are harmonic averages of p∗K and ρ�, the weight associated to p∗K being larger in the
denominator, since (y′)∗K is closer to 1 than y∗

K . We thus get:∑
K∈M

|K| (αg)K ≥ c7 = |Ω| −
∑

K∈M
|K|(α�)K,1

where c7 is positive by assumption, since ∀K ∈ M, y∗
K > 0. Thus there exists K0 ∈ M such that (αg)K0 ≥

c8 = c7/|Ω|. On the other hand, we have, still by conservativity:∑
K∈M

|K| (αg)K pK =
∑

K∈M
|K| zK =

∑
K∈M

|K| z∗K =
∑

K∈M
|K| � p,z

θ (p∗K , z∗K) y∗
K ≤ |Ω| ρ̄∗.

We thus get, since all the (αg)K and pk are non-negative:

(αg)K0 pK0 ≤ |Ω|
|K0| ρ̄∗

and thus, as (αg)K0 is bounded by below, the pressure is bounded by a quantity only depending on the data.
As a consequence, for ε small enough:

p ≤ c9 | ln(ε)|1/2. (B.14)
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Step 2. Second homotopy

We consider the function F : V × [0, 1] → R
N × R

M × R
M given by:

F (u, p, z, θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vσ,i = a(u, ϕ(i)
σ ) − θ

∫
Ω,h

p ∇ · ϕ(i)
σ dx −

∫
Ω

π · ϕ(i)
σ dx, σ ∈ Eint, 1 ≤ i ≤ d

qK =
|K|
δt

(pK − p∗K) + θ
∑

σ=K|L
v+

σ,K pK − v−
σ,K pL, K ∈ M

sK =
|K|
δt

(
zK − p∗K

ρ∗K
z∗K

)
+ θ

∑
σ=K|L

v+
σ,K zK − v−

σ,K zL, K ∈ M.

(B.15)

The system F (u, p, z, 1) = 0 is the same as the system obtained at the end of the preceding homotopy for θ = 0,
and the system F (u, p, z, 0) = 0 is linear and clearly regular (by stability of the bilinear form a).

In addition, the third equation is now decoupled from the first two ones, and these latter have the structure
of a monophasic compressible problem as studied in [16]. From this theory, an estimate similar to the first one
in the preceding step is available and reads:

1
2
||u||2a +

1
δt

∑
K∈M

|K| pK ln(pK) ≤ 1
δt

∑
K∈M

|K| p∗K ln(p∗K) +
1
2
||π||2−a .

Since the function s 
→ s ln(s) is bounded by below on (0, +∞), this latter relation yields:

||u||a ≤ c10. (B.16)

By Lemma B.1, we thus directly get:

c11 ≤ p ≤ c12, c13 ≤ z ≤ c14. (B.17)

Conclusion

We choose ε small enough for the relations (B.8), (B.9), (B.12) and (B.14) to hold, ε < min(c11, c13) and, in
addition:

ε < max(c3, c5) | ln(ε)|−1/2

which is possible because the function s 
→ s ln s tends to zero when s tends to zero. Let now M be such that:

M > max
[
max(c1, c9) | ln(ε)|1/2, c4, c10, c12, c14

]
.

Then, from inequalities (B.8), (B.9), (B.10), (B.11), (B.14), (B.16) and (B.17), we get that throughout both
homotopies, the unknown (u, p, z) remains in O. As the last linear system is regular and admits a solution in O,
the topological degree of F (·, θ) with respect to O and zero remains different of zero all along both homotopies,
which proves the existence of a solution in O.

We now turn to the proof of the a priori estimates ρ > 0, z > 0, 0 < y∗ ≤ 1 and p > 0. The fact that, if
ρ∗ > 0 and z∗ > 0, then ρ > 0 and z > 0 is a direct consequence of Lemma B.1 applied to the second and third
relation of problem (B.1). In addition, as both ρ∗ > 0 and ρ > 0, Lemma B.2 applies and thus, as 0 < y∗ ≤ 1,
we have 0 < y ≤ 1. If p ≥ ρ�, the fact that p > 0 is evident. In the other case, by the equation of state written
as a function of p and y (third form of (B.2)), we get first that:

p ≤ ρ < ρ� (B.18)
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and, second, that, since ρ > 0, the pressure does not vanish. Thus the second form of this same relation (B.2)
can be written:

ρ =
z

p
p +

(
1 − z

p

)
ρ� = αg p + (1 − αg) ρ�.

As p 
= ρ�, the void fraction αg thus reads:

αg =
ρ − ρ�

ρ� − p

which, by inequalities (B.18), yields αg > 0 and, finally, since z > 0, p > 0. �

This existence result applies directly to the pressure correction step used in the algorithm presented in this
paper, with a particular expression for the bilinear form a, which reads, dropping for short the time exponents:

a(u, v) =
∑

σ∈Eint

|Dσ|
δt

ρσ uσ · vσ.

Note that the analysis is performed here with a very simple equation of state for the gas (p = ρ), but would be
readily extended to general barotropic laws p = ℘(ρ), under the mild assumptions that the corresponding free
energy exists and is convex and the function ℘ is increasing and one to one from (0, +∞) to (0, +∞).

Let us now turn to the discretization of a stationary diphasic problem. As happens in the monophasic
case [17], it is likely that, in the case where the velocity is prescribed on the whole boundary, the problem is
well posed if the data of the total mixture mass (say Mm) and of the total gas mass (say Mg) present in the
computational domain are prescribed. A natural way to impose these two conditions is to add to this problem
two regularizing terms in the mass balance and the gas mass balance:∣∣∣∣∣∣∣∣∣∣

c(h) |K|
[
� p,z(pK , zK) − Mm

|Ω|
]

+
∑

σ=K|L
v+

σ,K � p,z(pK , zK) − v−
σ,K � p,z(pL, zL) = 0 ∀K ∈ M

c(h) |K|
[
zK − Mg

|Ω|
]

+
∑

σ=K|L
v+

σ,K zK − v−
σ,K zL = 0 ∀K ∈ M

where c(h) is a regularization parameter tending to zero with the size of the mesh. In this case, the present
existence theory directly applies, provided that the momentum balance equation remains linear with respect
to the velocity. Of course, under the same restriction, this is also true for an implicit discretization of a
time-dependent problem.

In view of the stability results provided for the advection operator, adding such a term to the first relation
of the problem (i.e. the momentum balance) should lead to a rather straightforward extension of the present
existence result; the advection term would be multiplied by the homotopy parameter and the stability (i.e. an
analogue to estimate (B.8)) would stem from the diffusion term. Note that, in this case, to keep the stability
of the advection term, a regularization term consistent with the mass balance one should also be introduced in
the momentum balance equation.

We have shown in this paper that, with Darcy’s law for the drift velocity and a particular discretization for
this term, the drift term is dissipative. Hence this term does not seem to prevent the obtention of stability
estimates such as (B.8); this suggests that the existence theory developed here might be extended to the complete
drift flux model.

Finally, we have not dealt in this study with the case where liquid monophasic zones (z = 0) exist in the
flow. In such zones, the pressure changes of mathematical nature: it is no more a parameter entering the
equation of state and determined by the local density, but a Lagrange multiplier for the incompressibility
constraint. Note that this fact is already underlying in the present study: indeed, the incompressibility of the
liquid prevents to derive L∞ estimates for the pressure from L∞ estimates for the density (which are readily
obtained using a conservation argument), and we must invoke to this purpose the stability of the discrete
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gradient (i.e. the discrete inf-sup condition), that is typically the argument allowing to control the pressure in
incompressible flow problems. However, obtaining a priori estimates when z may vanish in the flow seems a
difficult task, which should deserve more efforts. On the contrary, obtaining existence results for two barotropic
phases seems to be rather simpler than the analysis performed here [18].
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