
ESAIM: M2AN 45 (2011) 1163–1192 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2011008 www.esaim-m2an.org

SOME ENERGY CONSERVATIVE SCHEMES FOR VIBRO-IMPACTS
OF A BEAM ON RIGID OBSTACLES �
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Abstract. Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the
aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simpli�ed
model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare
some families of fully discretized approximations and their properties, in the case of non-penetration
Signorini�s conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam
model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of
a restitution coe�cient in the impact law. Finally, various numerical results are presented and energy
conservation capabilities of the schemes are investigated.

Mathematics Subject Classification. 35L85, 65M12, 74H15, 74H45.

Received October 8, 2010.
Published online July 4, 2011.

Introduction

During the launch of a satellite, the level of excitation is very high and the mass reduction of satellite solar
arrays can lead to impact problem and possibly damage the structure. So CNES is very interested in the
use of Finite Element Method (FEM) including local unilateral contact. The goal is to ensure that numerical
simulations are predictive enough to maintain a high reliability of spacecraft structures. This problem has been
a subject of intense research over the past twenty years, but the introduced methods are still hard to apply on
industrial structures. By the way, in industrial FEM analysis, it is usual to make simplifying assumptions, in
the modelling of joints for example, or to neglect some phenomena, such as contact between structures. Then,
an updating is introduced to modify some parameters (such as mass, stiffness and damping of sub-structures or
connections between components) in the numerical model in order to obtain better agreement between numerical
and experimental data. To select erroneous parameters, a localization criterion is applied and, classically at
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CNES, a constitutive relation error is used. It means that the mechanical system energy is used. In this respect,
it is of importance that the numerical simulations does not affect the energy of the system.

As far as elastodynamic contact problems are concerned, it is known that most of usual numerical schemes
exhibit spurious oscillations on the contact displacement and stress (see for instance [7]). Moreover, these
oscillations do not disappear when the time step decreases. On the contrary, they tend to increase, which
makes very difficult to build stable numerical schemes to solve such problems. These difficulties have already
led to many researches and a great variety of solutions were proposed. A first idea is to add damping terms
but it leads to a loss of accuracy on the solution. However, let us remark that adding damping leads to some
existence results, such as [8]. Another way is to implicit the contact stress (see [2,3]) but the kinetic energy of
the contacting nodes is lost at each impact. Looking for some energy conserving schemes is now a well-adressed
problem, see for example [6,9,10,17]. Nevertheless, these schemes exhibit large oscillations on the contact stress.
Besides, most of them do not strictly respect the constraint. Moreover, the way to establish balance of energy
is a mathematicaly very difficult problem even in the “simple” case of viscoelastic barmodel with Signorini
condition, see [14,15].

So, the goal of this paper is to introduce energy conserving schemes, based on the singular dynamic method
introduced by Renard [16], inspired from [7]. As this method was built for second order problems (Laplace
operator or elasticity), we try here to achieve a generalization to fourth order problems such as Euler-Bernouilli
beams or Kirchhoff-Love plates. Let us remark that this paper will only adress the case of beams but the case
of plates is in progress.

Consequently, this paper will be organized as follows. In the next section, the model problem we adress is
described. Then, the so-called singular dynamic method is introduced, for which stable singular mass matrices
schemes are derived in the case of our beam model. In Section 3, two full discretized schemes (Midpoint and
β-Newmark) are given, with particular emphasis on the way to take into account the restitution coefficient.
Finally, Section 4 presents various numerical results and investigates energy conservation capabilities of the
previous schemes.

1. The continuous elastodynamic contact problem

The motion of a beam submitted to an external load is studied. This beam is clamped on its left edge and
its vertical displacement is limited by rigid obstacles. Its longitudinal axis, which is its stress free reference
configuration, coincides with interval Ω =]0, L[. Euler-Bernouilli model is chosen to represent the motion of the
beam under the assumption of small displacements (the relationship between stress and strain is considered to
be linear). Then, u(x, t) stands for the vertical displacement of point x of the beam, at time t. In the following,
we will use the notations: u′ = ∂u

∂x and u̇ = ∂u
∂t · So the Euler-Bernouilli model for a clamped/free beam reads

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρS
∂2u

∂t2
(x, t) + EI

∂4u

∂x4
(x, t) = f(x, t) ∀(x, t) ∈]0, L[×]0, T [

u(x, 0) = u0(x), u̇(x, 0) = v0(x) ∀x ∈ [0, L]

u(0, t) =
∂u

∂x
(0, t) = 0 =

∂3u

∂x3
(L, t) =

∂2u

∂x2
(L, t) ∀t ∈ [0, T ]

(1.1)

where ρ (≥ ρ0 > 0) is the mass density and E is the Young’s modulus of the material, while S and I are
respectively the surface and the inertial momentum of the beam section. In the case of a sine-sweep base forced
vibration, boundary conditions should be given on the left edge by

u(0, t) = a sin(ωt),
∂u

∂x
(0, t) = 0, ∀t ∈ [0, T ]. (1.2)
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As we will look for a variational solution of (1.1), we need to introduce some functional spaces. So, we set

H = L2(Ω), W = {w ∈ H2(Ω) / w(0) = w′(0) = 0 },

where H2(Ω) is the usual Sobolev space, while the equalities w(0) = w′(0) = 0 should be understood in the trace
sense. Moreover, in the case of dynamic frictionless Euler-Bernouilli model with Signorini contact conditions
along the beam, the displacement has to belong to the convex set K ⊂ W given by

K = {w ∈ W / g1(x) ≤ w(x) ≤ g2(x), ∀x ∈ [0, L]},

where g1 and g2 are two mappings from [0, L] to R̄ such that there exists g > 0 such that

g1(x) ≤ −g < 0 < g ≤ g2(x) ∀x ∈ [0, L].

Then, the mechanical frictionless elastodynamic problem for a beam between two rigid obstacles can be written
as the following variational inequality⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find u : [0, T ] → K such that for almost every t ∈ [0, T ] and for every w ∈ W

∫
Ω

[
ρS

∂2u

∂t2
(t) (w − u(t)) + EI

∂2u

∂x2
(t)

∂2(w − u(t))
∂x2

]
dΩ ≥

∫
Ω

f (w − u(t)) dΩ

u(x, 0) = u0(x) ∈ K, u̇(x, 0) = v0(x), ∀x ∈ Ω.

(1.3)

Assuming that f ∈ L2(0, T ; H), u0 ∈ K, v0 ∈ H, Kuttler and Schillor proved in [8] that problem (1.3) has
a solution u belonging to L2(0, T ; K). For this, they used a penalty method. Another proof of this result is
due to Dumont and Paoli [4], who established convergence of the solutions of fully discretized approximations
of the problem. As far as uniqueness is concerned, it can be easily shown that it does not occur for (1.3): a
counterexample is given in [1]. Finally, there is no result about conservation of energy at the limit.

In fact, discretization of (1.3) does not describe completely the motion: a constitutive law for impact should
be added (see [11]). For example, if there is an impact at (x0, t0), this law gives the relation between velocities
before and after impact

u̇(x0, t
+
0 ) = −e u̇(x0, t

−
0 ) whenever u(x0, t0) ∈ ∂K, (1.4)

where scalar e, called restitution coefficient, is a real number belonging to [0, 1]. e = 1 matches to a perfect
impact: velocity is conserved, up to its sign, whereas e = 0 is an absorbing shock. Let us remark that, in [13],
the authors show that the restitution coefficient for a bar is a rather ill-defined concept. For instance, their
numerical experiments underline the observed restitution coefficient depends very strongly on the initial angle
of the bar with horizontal. Moreover, in the particular case of a slender bar dropped on a rigid foundation,
the chosen value of the restitution coefficient does not seem to have a great influence on the displacement limit
when the space step tends to zero.

Despite the previous remarks, our idea is to explicitly incorporate the restitution coefficient into (1.3) and to
observe how some numerical schemes will simulate the experimental behavior of a vibrating beam. Doing this,
our aim is to investigate the possibility to use restitution coefficient as an unknown parameter for updating of
FEM with experimental results.

2. Singular dynamic method

2.1. Well-posed space semi-discretization

The goal of this section is to present a well-posed space semi-discretization of Problem (1.3). As usual, a
Galerkin method is used for space discretization, but the original idea, due to Renard [16], is to introduce
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different approximations for displacement u and velocity v = u̇. So, let W
h and H

h be two finite dimensional
vector subspaces of W and H respectively. Let K

h ⊂ W
h be a closed convex nonempty approximation of K.

The new approximation of (1.3) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh : [0, T ] → K
h and vh : [0, T ] → H

h such that for all t ∈ (0, T ]

∫
Ω

[
ρS

∂vh

∂t
(wh − uh) + EI

∂2uh

∂x2

∂2(wh − uh)
∂x2

]
dΩ ≥

∫
Ω

f(wh − uh) dΩ, ∀wh ∈ K
h

∫
Ω

ρS

[
vh − ∂uh

∂t

]
qhdΩ = 0, ∀qh ∈ H

h

uh(x, 0) = uh
0(x), vh(x, 0) = vh

0 (x), ∀x ∈ Ω

(2.1)

where uh
0 ∈ K

h and vh
0 ∈ H

h are approximations of u0 and v0 respectively. The case H
h = W

h clearly
corresponds to a standard Galerkin approximation of (1.3).

Let us now introduce some basis of W
h and H

h, say respectively φi (1 ≤ i ≤ NW ) and ψi (1 ≤ i ≤ NH).
The above discrete variational formulation is associated with matrices K (stiffness matrix), B and C (mass
matrices) of respective sizes N2

W , NH ×NW and N2
H , defined by

Kij =
∫

Ω

EI φ′′i φ
′′
j dΩ, Bij =

∫
Ω

ρS φi ψj dΩ, Cij =
∫

Ω

ρS ψi ψj dΩ.

The related vectors, say F , U (components ui) and V (components vi), of size NW , NW and NH respectively,
are such that

Fi =
∫

Ω

f φi dΩ, uh(t) =
NW∑
i=1

ui(t)φi, vh(t) =
NH∑
i=1

vi(t)ψi.

Let us remark that the second equation of (2.1) reads

C V (t) = B U̇(t).

Since C is always invertible, we obtain V (t) = C−1 B U̇(t) and, then, V̇ (t) = C−1 B Ü(t), which allows to
eliminate V . So the semi-discretized problem (2.1) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find U : [0, T ] → K
h and V : [0, T ] → H

h such that for all t ∈ (0, T ]

(W − U(t))T (MÜ(t) + KU(t)) ≥ (W − U(t))T F, ∀W ∈ K
h,

C V (t) = B U̇(t),

U(0) = U0, V (0) = V0,

(2.2)

where M is the so-called singular mass matrix defined by

M = BT C−1 B. (2.3)

Let us now explain how the approximation K
h of K is obtained. We recall that

K = {w ∈ W / g1(x) ≤ w(x) ≤ g2(x), ∀x ∈ [0, L]}.
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As usual, it is natural to introduce a partition of interval [0, L] into N subintervals of length h = L/N , built on
nodes xi = ih, for 0 ≤ i ≤ N . So, unilateral constraints are only considered at these nodes. It means convex
K

h is
K

h = {wh ∈ W
h / g1(xi) ≤ wh(xi) ≤ g2(xi), ∀i ∈ [0, N ]}. (2.4)

With vector notations, setting α−
i ≡ g1(xi) and α+

i ≡ g2(xi) for all i, this space may be written (we keep
the same notation for simplicity)

K
h = {W ∈ R

NW / α−
i ≤ (Gi)T W ≤ α+

i , ∀i ∈ [0, N ]},

where Gi is the vector of R
NW such that (Gi)T W = wh(xi), for all node xi.

Remark 2.1. Since we deal with a fourth order problem with respect to the space derivative, it is not possible
to consider a linear space approximation. In fact, for this beam model, we use the classical Hermite third
degree polynomials to approximate the numerical displacement. It means the degrees of freedom are node
displacements and their derivatives. So, in the above approximation of K, we consider only constraints on
node displacements: the effect of the derivatives, namely the curvature, is not taken into account. Then, in
this framework, the beam could cross the obstacle between two nodes, but we shall neglect this aspect in the
following.

Furthemore, it was told that functions g1 and g2 takes their values in R̄, which means that α±
i may be equal

to ±∞. In this case, the constraint is worthless. For instance, it will be the case if the obstacles are reduced
to end stops on the free edge of the beam. Then, α±

i = ±∞ for all i 
= N and α±
N = ±g, if g stands for the

allowed maximal displacement. Moreover, it is assumed that the clamped edge, which corresponds to node x0,
satisfies the constraints. So, it is natural to introduce the number, say NG, of “real” constraints. For example,
NG = 1 for end stops and NG = N for flat obstacles up and under the beam.

Now, let us denote by G the NW × NG matrix, which components are Gij = (Gi)j . As the previous choice is
clearly such that vectors Gi are linearly independent, using the Lagrange multipliers, the discrete problem (2.2)
is also equivalent to the following one⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find U : [0, T ] → K
h and V : [0, T ] → H

h such that for all t ∈ (0, T ]

MÜ(t) + KU(t) = F +
NG∑
i=1

λi(t)Gi,

⎧⎪⎨
⎪⎩

λi(t) ≥ 0, (Gi)T U(t) ≥ α−
i , λi(t)

(
(Gi)T U(t) − α−

i

)
= 0

or

λi(t) ≤ 0, (Gi)T U(t) ≤ α+
i , λi(t)

(
(Gi)T U(t) − α+

i

)
= 0

⎫⎪⎬
⎪⎭ 1 ≤ i ≤ NG

C V (t) = B U̇(t),
U(0) = U0, V (0) = V0.

(2.5)

Here, the Lagrange multipliers λi are the reaction forces which are measures on (0, T ]. And the orthogonality
has its natural meaning: an appropriate duality product between the two terms of the relation vanishes.

Now, let us introduce subspace F
h of W

h, defined by

F
h =

{
wh ∈ W

h

/ ∫
Ω

ρS wh ξhdΩ = 0, ∀ξh ∈ H
h

}
.

Then, with the above definitions, we have
F

h = ker B.
The proof of the following result can be found in [16].



1168 C. POZZOLINI AND M. SALAUN

Theorem 2.2. If W
h, H

h and K
h satisfy the following Inf-Sup condition

inf
Q∈R

Ng\{0}
sup

W∈Fh\{0}

QT G W

‖Q‖ ‖W‖ > 0, (2.6)

then Problem (2.2) admits a unique solution U(t). Moreover, this solution is Lipschitz-continuous with respect
to t and verifies the following persistency condition

λi(t) (Gi)T U̇(t) = 0, ∀t ∈ (0, T ], 1 ≤ i ≤ Ng.

Finally, solution U(t) is energy conserving in the sense that the discrete energy

Eh(t) =
1
2
U̇T (t) M U̇(t) +

1
2
UT (t) K U(t) − UT (t) F,

is constant with respect to t.

Remark 2.3. The persistency condition (see [9] and [10]), which links velocity U̇(t) and Lagrange multipliers, is
a stronger condition than the classical complementary condition between solution U(t) and Lagrange multipliers.
That is this persistency condition which allows to prove energy conservation.

2.2. Numerical discretization

Thanks to the above theorem, proving condition (2.6) is sufficient to obtain well-posedness of the discrete
problem (2.2). Let us remark this condition is equivalent to the fact that matrix G is surjective on F

h. As a
result of this, we must have

dim F
h ≥ NG and consequently dim H

h ≤ dim W
h − NG.

This prescribes conditions on the approximation spaces W
h, H

h and also K
h. In order to illustrate that

condition (2.6) holds for interesting practical situations, we will give two examples of approximation spaces for
our beam problem.

To build the finite element method, it was introduced a partition of [0, L] into N subintervals of length
h = L/N , built on nodes xi = ih, for 0 ≤ i ≤ N . As node x0 = 0 is clamped, we will omit it from now
on and consider that index i varies between 1 and N . Otherwise, it would introduce small modifications in the
following. So, at each node xi are associated two Hermite piecewise cubic functions, say φ2i−1 and φ2i, defined
for 1 ≤ i ≤ N by

φ2i−1(xj) = δij and φ′2i−1(xj) = 0, φ2i(xj) = 0 and φ′2i(xj) = δij ,

where δij is Kronecker symbol. Moreover, functions φj are chosen of class C1 on [0, L], which insures that each
φj belongs to the continuous space W. Hence, displacement wh reads

wh(x) =
N∑

i=1

wh
2i−1φ2i−1(x) +

N∑
i=1

wh
2iφ2i(x),

and coefficient wh
2i−1 gives the value of wh at node xi while wh

2i gives the value of its derivative at the same
node. The approximation space for displacements is then

W
h = span{φj, 1 ≤ j ≤ 2N},

which is a subset of W. In this case, with the previous notations, we have NW = 2N .
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Now, let us recall that constraints are only considered at nodes xi. If wh is an element of W
h, we have

K
h = {wh ∈ W

h / α−
i ≤ wh(xi) = wh

2i−1 ≤ α+
i , ∀i ∈ [1, N ]}.

Let W be the vector of R
NW which components are wh

j . Then, vector Gi of R
NW , which components are all

zero except (Gi)2i−1 = 1, is such that (Gi)T W = wh
2i−1, for all node xi. To check the Inf-Sup condition, we

will consider the “worst” case, which occurs when the whole beam is between two obstacles. It means that each
α±

i is finite.

2.2.1. P0 interpolation for velocity

The first choice for space H
h is to use piecewise constant polynomial functions. Let us begin by characterizing

F
h = ker B. Let wh be an element of W

h. We have

wh(x) =
N∑

i=1

wh
2i−1φ2i−1(x) +

N∑
i=1

wh
2iφ2i(x). (2.7)

wh belongs to F
h if ∫

Ω

ρS wh ξhdΩ = 0, ∀ξh ∈ H
h. (2.8)

In the following, we will assume that ρS is constant all along the beam, which allows to drop it. Then, the
previous relation is equivalent to ∫ xi

xi−1

wh dx = 0, ∀i ∈ [1, N ].

For i = 1, it becomes
∫ x1

x0

(wh
1φ1(x) + wh

2φ2(x)) dx = 0. As x0 = 0 and x1 = h (mesh size), it is easy to check

that φ2(x) =
x2

h2
(x − h) and

∫ h

0

φ2(x) dx = −h
2

12
, which is always non zero. So, it is possible to compute wh

2

from wh
1 and we have

wh
2 = −wh

1

∫ x1

x0
φ1(x) dx∫ x1

x0
φ2(x) dx

·

Similarly, for i 
= 1, we have∫ xi

xi−1

(wh
2i−3φ2i−3(x) + wh

2i−2φ2i−2(x) + wh
2i−1φ2i−1(x) + wh

2iφ2i(x)) dx = 0,

which leads to

wh
2i = − wh

2i−3

∫ xi

xi−1
φ2i−3(x) dx∫ xi

xi−1
φ2i(x) dx

− wh
2i−2

∫ xi

xi−1
φ2i−2(x) dx∫ xi

xi−1
φ2i(x) dx

− wh
2i−1

∫ xi

xi−1
φ2i−1(x) dx∫ xi

xi−1
φ2i(x) dx

,

as
∫ xi

xi−1
φ2i(x) dx 
= 0 for the same reason than above. Consequently, as wh

2 is function of wh
1 , wh

4 depends on
wh

1 and wh
3 and, by direct induction, for any element of kerB, the degrees of freedom wh

2i can be expressed as
functions of wh

2j−1. It means any element w̄h(x) of ker B reads

w̄h(x) =
N∑

i=1

wh
2i−1φ2i−1(x) +

N∑
i=1

fi(wh
2j−1)φ2i(x),

where fi(wh
2j−1) is a function of the “odd” degrees of freedom.
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Therefore, if W̄ is the vector of R
NW which components are w̄h

j , it becomes obvious that (Gi)T W̄ = wh
2i−1,

for all node xi : G is surjective on ker B and the Inf-Sup condition is satisfied.

Remark 2.4. It is easy to see the previous proof remains true if the mesh size h is not constant, which means
nodes xi are not regularly distributed along the beam. Similarly, the condition “ρS constant all along the beam”
may be replaced by “ρS constant on each element”.

2.2.2. P1 interpolation for the velocity

The second choice for space H
h is to use continuous piecewise linear polynomial functions. If N + 1 is

the number of nodes on the beam (including the “clamped node”), let us remark that we have in this case
dim H

h = N + 1 which is not less equal than dim W
h − NG = 2N − N = N in the worst case. Nevertheless,

the “clamped node” velocity is zero and it is natural to take this condition into account. Then, dim H
h = N

and we can hope the Inf-Sup condition may occur.
As above, let us begin by characterizing F

h. Starting from definitions of wh (2.7) and F
h (2.8), and assuming

again that ρS is constant which allows to drop it, we obtain

∫ xi+1

xi−1

wh ψi dx = 0, ∀i ∈ [1, N − 1], (2.9)

and ∫ xN

xN−1

wh ψN dx = 0, (2.10)

where ψi is the continuous piecewise linear function such that ψi(xj) = δij . Before analysing these equations,
let us first give the expressions of the finite element basis functions, we shall need further. It is made on interval
[0, h], the extension to a generic interval [xi, xi+1], where xi = ih, being obtained by a simple translation. So
we have for the piecewise linear polynomial functions

ψl(x) = 1 − x

h
, ψr(x) =

x

h
,

and for the third order polynomial functions associated with the derivative degrees of freedom

φl(x) = x
(
1 − x

h

)2

, φr(x) =
x2

h2
(x− h),

where indices l and r represent the left node and the right one respectively. Finally, it is easy to check that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ h

0

φl(x) ψl(x) dx =
h2

20
= −

∫ h

0

φr(x) ψr(x) dx,

∫ h

0

φl(x) ψr(x) dx =
h2

30
= −

∫ h

0

φr(x) ψl(x) dx.

(2.11)

Then, for i = 1, by using (2.11), equation (2.9) becomes

∫ x2

x0

wh ψ1 dx =
∫ x2

x0

(wh
1φ1 + wh

2φ2) ψ1 dx +
∫ x2

x1

(wh
3φ3 + wh

4φ4) ψ1 dx

= wh
1

∫ x2

x0

φ1 ψ1 dx + wh
2

(
−h

2

20
+

h2

20

)
+ wh

3

∫ x2

x1

φ3 ψ1 dx − wh
4

h2

30
= 0.
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So, it is possible to compute wh
4 from wh

1 and wh
3 as wh

4 = f(wh
1 , w

h
3 ). For simplicity, in the following, f will

indicate various (polynomial) functions. Similarly, for 1 < i < N , we have

∫ xi+1

xi−1

wh ψi dx =
∫ xi

xi−1

(wh
2i−3φ2i−3 + wh

2i−2φ2i−2) ψi dx+
∫ xi+1

xi−1

(wh
2i−1φ2i−1 + wh

2iφ2i) ψi dx

+
∫ xi+1

xi

(wh
2i+1φ2i+1 + wh

2i+2φ2i+2) ψi dx

= wh
2i−3

∫ xi

xi−1

φ2i−3 ψi dx+ wh
2i−2

h2

30
+ wh

2i−1

∫ xi+1

xi−1

φ2i−1 ψi dx

+ wh
2i

(
−h

2

20
+

h2

20

)
+ wh

2i+1

∫ xi+1

xi

φ2i+1 ψi dx− wh
2i+2

h2

30
= 0

which leads to
wh

2i+2 = wh
2i−2 + f(wh

2i−3, w
h
2i−1, w

h
2i+1).

Consequently, by direct induction, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wh
2 = wh

2

wh
4 = f(wh

1 , w
h
3 )

wh
6 = wh

2 + f(wh
1 , w

h
3 , w

h
5 )

wh
8 = wh

4 + f(wh
3 , w

h
5 , w

h
7 ) = f(wh

1 , w
h
3 , w

h
5 , w

h
7 )

wh
10 = wh

6 + f(wh
5 , w

h
7 , w

h
9 ) = wh

2 + f(wh
1 , w

h
3 , w

h
5 , w

h
7 , w

h
9 )

...
wh

4k−2 = wh
2 + f(wh

odd)
wh

4k = f(wh
odd)

...

where f(wh
odd) stands for various functions depending on the set of wh

j , j being odd. In particular, let us observe
that the two last equations, corresponding to i = N − 1, read⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
wh

2N−2 = wh
2 + f(wh

odd)
wh

2N = f(wh
odd)

}
if N is even

{
wh

2N−2 = f(wh
odd)

wh
2N = wh

2 + f(wh
odd)

}
if N is odd.

(2.12)

Finally, the last equation (2.10) becomes

∫ xN

xN−1

wh ψN dx =
∫ xN

xN−1

(wh
2N−3φ2N−3 + wh

2N−2φ2N−2 + wh
2N−1φ2N−1 + wh

2Nφ2N ) ψN dx

= wh
2N−3

∫ xN

xN−1

φ2N−3 ψN dx+ wh
2N−2

h2

30
+ wh

2N−1

∫ xN+1

xN−1

φ2N−1 ψN dx

− wh
2N

h2

20
= 0,

or else
wh

2N =
2
3
wh

2N−2 + f(wh
2N−3, w

h
2N−1).

Then, using (2.12), in both cases (N being odd or even), we obtain wh
2 = f(wh

odd).
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Finally, exactly as in Section 2.2.1, for any element of kerB, the degrees of freedom wh
2i can be expressed as

functions of wh
2j−1 and the Inf-Sup condition is satisfied.

3. Full discretized schemes

In this section, we present two approaches for space discretization of the velocity, and we compare Midpoint
and β-Newmark schemes for time discretization. These schemes are interesting since they are energy conserving
during the linear part of the motion (equation without constraint). As previously mentioned, classical P3-
Hermite finite elements are used to approximate displacement u. Moreover, Δt will be the time step and e the
restitution coefficient.

3.1. Newmark-Dumont-Paoli schemes

3.1.1. Case of a regular mass matrix

To solve problem (1.3), Dumont-Paoli [4] introduced the following fully implicit Newmark scheme

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find Un+1 ∈ K
h such that for all W ∈ K

h

(
W − Un+1

)T (
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))

≥ (
W − Un+1

)T
Fn,β

(3.1)

where
Fn,β = βFn+1 + (1 − 2β)Fn + βFn−1, (3.2)

F k being the vector which components are F k
i =

∫
Ω

f(x, kΔt) φi(x) dΩ. Finally, (φi)i stand for the piecewise

cubic basis functions defining space W
h and Mr is the associated regular mass matrix.

To take into account the restitution coefficient e defined by (1.4), we follow the choice introduced by
Paoli-Schatzman (see [12,13]), which consists in replacing Un+1 by Un+1+eUn−1

1+e · Then, a more general dis-
cretization of (1.3) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Un+1,e ≡ Un+1 + eUn−1

1 + e
∈ K

h such that for all W ∈ K
h

(W − Un+1,e)T

(
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))

≥ (
W − Un+1,e

)T
Fn,β.

(3.3)

Let us remark that Dumont-Paoli fully implicit scheme corresponds to e = 0, which is a totally absorbing
impact. In this case, the authors established unconditional stability for β = 1/2 whereas a conditional stability
result is obtained when β ∈ [0, 1/2[ (see [4]). Moreover, for β ∈ [0, 1/2], a weak convergence result (up to a
subsequence) is demonstrated.

Remark 3.1. Defining the total energy by

E(w, ẇ) :=
∫

Ω

[
ρS

2
(ẇ(x, t))2 +

EI

2
(w′′(x, t))2 − f(x, t) w(x, t)

]
dΩ,
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it is easy to see that E(un+1, vn+1) ≤ E(un, vn). This Newmark-Dumont-Paoli scheme is dissipative in
energy. Indeed, energy is conserved as long as the beam does not touch the obstacles and it is dissipated when
beam reaches them, except for a totally elastic shock (e = 1) which is the only case where kinetic energy is
conserved.

3.1.2. Case of singular mass matrix

To derive a Newmark scheme using the singular mass matrix approach, let us go from the equilibrium equation
given in (2.5)

M Ü + K U = F + Λ ≡ F̃ ,

where Λ stands for the reaction, which is zero when there is no contact. Moreover, the singular mass approach
introduces matrices C and B such that C V = B U̇ , the singular mass matrix being M = BT C−1 B.

The usual (1/2, β)-Newmark scheme reads

⎧⎨
⎩

Un+1 = Un + Δt U̇n + (1
2 − β) Δt2Ün + βΔt2Ün+1,

U̇n+1 = U̇n + Δt
2 Ü

n + Δt
2 Ü

n+1.

Multiplying left by B and using C V = B U̇ , we deduce

⎧⎨
⎩

B Un+1 = B Un + Δt C V n + (1
2 − β) Δt2B Ün + βΔt2B Ün+1,

C V n+1 = C V n + Δt
2 B Ün + Δt

2 B Ün+1.

(3.4)

It is well-known it is possible to derive a two-step scheme by eliminating velocity from this relations. First, we
write {

B Un = B Un−1 + Δt C V n−1 + (1
2 − β) Δt2B Ün−1 + βΔt2B Ün,

B Un+1 = B Un + Δt C V n + (1
2 − β) Δt2B Ün + βΔt2B Ün+1,

which leads to

B (Un+1 − 2 Un + Un−1) = Δt C (V n − V n−1)
+ Δt2 B

(
βÜn+1 +

(
1
2 − 2β

)
Ün − (

1
2 − β

)
Ün−1

)
,

and finally, with the second equation of (3.4), written at step n instead of n+ 1

B (Un+1 − 2 Un + Un−1) = Δt2 B
(
βÜn+1 + (1 − 2β)Ün + βÜn−1

)
.

Multiplying this relation by BT C−1, we obtain

M (Un+1 − 2 Un + Un−1) = Δt2 M
(
βÜn+1 + (1 − 2β)Ün + βÜn−1

)
,

where M is the singular mass matrix. As usual for Newmark scheme, we replace acceleration by its value, given
by the equilibrium equation. Hence, in the case of the singular mass matrix approach, Newmark scheme reads

M
Un+1 − 2 Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

)
=
(
βF̃n+1 + (1 − 2β)F̃n + βF̃n−1

)
,

which reads exactly as the Newmark scheme except the regular mass matrix Mr has been replaced by the
singular one.
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Therefore, in the case of Newmark scheme, the singular mass matrix approach leads to a scheme similar
to (3.3) ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find Un+1,e =
Un+1 + eUn−1

1 + e
∈ K

h such that for all W ∈ K
h

(
W − Un+1,e

)T (
M

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))
≥ (

W − Un+1,e
)T

Fn,β.

(3.5)

To conclude, let us remark that, as matrix K is positive definite, this variational inequality has always a unique
solution even if M is singular.

Remark 3.2. As mentioned above, for e = 0, problem (3.5) is formally identical to (3.1). The only difference
lies in the expression of the mass matrix. For (3.1), Dumont-Paoli [4] established unconditional stability when
β = 1/2. As their proof doesn’t use the invertibility of the mass matrix, a similar calculation should prove
the same result for singular mass matrix approach for any e. Nevertheless, the main difficulty is to write the
continuous problem associated to a singular mass operator and, in particular, to take into account that velocity
is a bounded variation function, including its reliance on restitution coefficient, and acceleration is a differential
measure.

Remark 3.3. Now, let us discuss very briefly strong convergence of the discrete solution. Ahn and Stewart [1]
show that the amount of energy in high frequency modes, related to the fourth-order operator, is almost zero
under the assumption of strong convergence to the solution of (1.3). From a mechanical point of view, it means
that high frequency modes would be damped. As the singular mass matrix method transforms (1.3) into a
Lipschitz-O.D.E., for a given space step, every convergent scheme for a Lipschitz-O.D.E. will converge when
Δt goes to zero, and the limit is obviously the unique solution of (2.2) which is conservative. So, if it can be
proved the weak convergence of the solution of (3.5) to the problem (1.3), the strong convergence will follow
from the balance of energy with the singular mass matrix (2.3). However, the same problem as in the previous
remark appears. Indeed, equation (1.3) doesn’t include the restitution coefficient introduced by (1.4), nor the
derived Lipschitz-O.D.E. Consequently, the complete link between full discretized schemes, including restitution
coefficient, and initial P.D.E. has to be investigated in depth.

3.2. Midpoint schemes

Following Renard [16], the midpoint scheme applied to Problem (2.2) consists in finding Un+1/2 in K
h such

that ⎧⎪⎪⎨
⎪⎪⎩

(W − Un+1/2)T (MAn+1/2 + KUn+1/2) ≥ (W − Un+1/2)T Fn, ∀W ∈ K
h,

Un+1/2 =
Un + Un+1

2
, V n+1/2 =

V n + V n+1

2
,

BUn+1 = BUn + ΔtCV n+1/2, CV n+1 = CV n + ΔtBAn+1/2,

(3.6)

where An+1/2 is acceleration at “middle time step” n+ 1/2. As matrix C is invertible, we have

V n+1 = 2V n+1/2 − V n = 2C−1 B
Un+1 − Un

Δt
− V n = 4C−1 B

Un+1/2 − Un

Δt
− V n.

Moreover, An+1/2 can be eliminated in the following way

M An+1/2 = BT C−1 B An+1/2 = BT C−1 CV n+1 − CV n

Δt
= BT V n+1 − V n

Δt
,

or more explicitly

M An+1/2 = 4BT C−1 B
Un+1/2 − Un

Δt2
− 2BT V n

Δt
=

4
Δt2

M Un+1/2 − 4
Δt2

M Un − 2
Δt

BT V n.
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Then, a new formulation of (3.6) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un and V n being given, find Un+1/2 ∈ K
h such that

(W − Un+1/2)T ( 4
�t2 MUn+1/2 + KUn+1/2) ≥ (W − Un+1/2)T F̄n, ∀W ∈ K

h,

where F̄n = Fn + 4
Δt2 M Un + 2

ΔtBT V n

Un+1 = 2Un+1/2 − Un, V n+1 = 2C−1 B Un+1−Un

Δt − V n.

(3.7)

Exactly as for Newmark scheme, this variational inequality has always a unique solution even if M is singular.
Let us observe that midpoint scheme corresponds to e = 1, which is a perfect elastic impact. In fact, when

a shock occurs, Un+1/2 belongs to the boundary of K
h. At this moment, it means the velocity V n+1/2 = 0 and

then V n+1 = −V n: velocity just after the impact is the same, up to its sign, than before. Consequently, a way
to introduce the restitution coefficient in midpoint scheme is to set

V n+1/2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V n + V n+1

2
when there is no shock,

eV n + V n+1

1 + e
if shock occurs,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
ξV n + V n+1

1 + ξ
,

where ξ = 1 or ξ = e depending on whether there is a shock or not. Then, (3.7) has to be modified in the
appropriate way.

Remark 3.4. In the case H
h = W

h, which corresponds to the classical discretization where displacement and
velocity are approximated in the same way, we obtain a scheme similar to (3.7), the only differences being the
singular mass matrix M is replaced by the regular one Mr and C = B = BT so C−1 B = I. Finally, we do not
prove the convergence of these schemes towards a solution of the continuous problem. Nevertheless, we shall
observe good numerical results with singular mass discretization and instabilities for regular one when e = 1.

4. Numerical results

As in Dumont-Paoli [4], it is considered the case of a steel pipe, which length is L = 1.501 m, external
diameter is equal to 1 cm and thickness is 0.5 mm. The material properties are characterized by its Young
modulus E = 2 × 1011 Pa and its density ρ = 8.103 kg/m3. Thus, in this case, we have EI

ρS = 282.84 m4 s−2,
where I is the quadratic momentum of inertia of the beam and S its section. All the next computations will
use Matlab.

Moreover, in the following, we will consider two kinds of obstacles (see (2.4) for definition of convex K
h):

• Punctual stops at the right edge of the beam

{
g2(L) = −g1(L) = 0.1,
g2(x) = −g1(x) = +∞, ∀ x ∈ [0, L[. (4.1)

• Flat obstacles all along the beam

g2(x) = −g1(x) = 0.1, ∀ x ∈ [0, L].
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4.1. Some aspects of numerical implementation

To explain how the algorithm works in the general case, let us begin with the fully implicit Newmark-Dumont-
Paoli scheme (3.1). First, it can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

Find Un+1 ∈ K
h such that for all W ∈ K

h

(
W − Un+1

)T (
Mr

Δt2
Un+1 + β KUn+1

)
≥ (

W − Un+1
)T

F̃n
(4.2)

where

F̃n = Fn,β − Mr
−2Un + Un−1

Δt2
− K

(
(1 − 2β)Un + βUn−1

)
,

Fn,β being given by (3.2). Since matrix A ≡ 1
Δt2 Mr + β K is positive definite and symmetric, equation

(4.2) is equivalent to the following minimization problem

Un+1 = ArgminW∈Kh

(
1
2
WT A W − (F̃n)T W

)
.

Let us remark that, as constraints defining K
h are linear, the above minimization problem is a linear quadratic

problem, which can be solved by different methods. As in [5], we will use the Matlab function “quadprog”,
which uses a Lagrange multipliers method. Nevertheless, in the case of punctual obstacles (4.1), we will
directly compute Un+1 as the projection of the unconstrained solution on K

h, which is much more efficient than
“quadprog” function.

Now, let us study the general case (e 
= 0), corresponding to (3.3), we recall here

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Un+1,e =
Un+1 + eUn−1

1 + e
∈ K

h such that for all W ∈ K
h

(W − Un+1,e)T

(
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))

≥ (
W − Un+1,e

)T
Fn,β.

Then, it is possible to express Un+1 as Un+1 = (1 + e) Un+1,e − e Un−1 and to replace it in the previous
inequality

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(W − Un+1,e)T

(
Mr

(1 + e)Un+1,e − 2Un + (1 − e)Un−1

Δt2

+ K
(
β(1 + e) Un+1,e + (1 − 2β)Un + β(1 − e)Un−1

)) ≥ (
W − Un+1,e

)T
Fn,β

and the problem becomes
⎧⎪⎪⎨
⎪⎪⎩

Find Un+1,e ∈ K
h such that for all W ∈ K

h

(
W − Un+1,e

)T (
Mr

Δt2
Un+1,e + β KUn+1,e

)
≥ (

W − Un+1,e
)T

Gn
(4.3)
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Figure 1. Regular versus P3/P0 singular mass matrix. NDP scheme. e = 0, Δt = 10−4, 39 elements.

where

Gn =
1

1 + e

(
F̃n + e

(
1

Δt2
Mr + β K

)
Un−1

)
.

It looks like exactly as (4.2) and is solved in the same way.
Consequently, the way to solve (3.3) follows Paoli-Schatzman [13]. First, we calculate Qn+1 ≡ A−1 F̃n.

Second, the following alternative holds:

• if
Qn+1 + eUn−1

1 + e
belongs to K

h, equation (4.3) is verified and we set Un+1 = Qn+1;

• if
Qn+1 + eUn−1

1 + e
doesn’t belong to K

h, we solve (4.3) with “quadprog” function or direct projection,

and we set Un+1 = (1 + e) Un+1,e − e Un−1.
It has to be said that the fact Un+1,e belongs to K

h doesn’t mean that Un+1 belongs to K
h too. By the way,

it doesn’t but it is close. This phenomenon is also pointed out by Paoli-Schatzman [13].

Remark 4.1. The case of a singular mass matrix (Eq. (3.5)) is handled exactly in the same way as matrix
1

Δt2 M + β K has the same properties than the above defined matrix A.

4.2. Case of pointwise stops with e = 0

In this section, we consider the fully implicit Newmark-Dumont-Paoli (NDP) scheme and we compare the
regular mass matrix discretization (3.1) with the singular ones (3.5). So we use the two kinds of singular
mass matrices (P3/P0 and P3/P1), as they are described in the previous sections. Then, the next figures give,
for various time steps, the numerical displacement of the right edge of the beam. For all Newmark schemes,
parameter β is taken equal to 1/2, which insures unconditional stability. Finally, initial conditions correspond
to a sine-sweep base forced vibration (1.2) of amplitude a = 0.2 and frequency ω = 10 Hz.
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Figure 2. Regular versus P3/P0 singular mass matrix. NDP scheme. e = 0, Δt = 10−5, 39 elements.

Figure 3. Regular versus P3/P1 singular mass matrix. NDP scheme. e = 0, Δt = 10−4, 39 elements.
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Figure 4. Regular versus P3/P1 singular mass matrix. NDP scheme. e = 0, Δt = 10−5, 39 elements.

Figure 5. Displacement and reaction with NDP P3/P0 singular mass matrix. e = 0, Δt =
10−4, 100 elements.
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Figure 6. Displacement and reaction with NDP P3/P1 singular mass matrix. e = 0, Δt =
10−4, 100 elements.

Figure 7. Midpoint P3/P0 singular mass matrix (e = 1) versus NDP regular mass matrix
(e = 0). Δt = 10−5, 100 elements.



SOME ENERGY CONSERVATIVE SCHEMES FOR VIBRO-IMPACTS OF A BEAM ON RIGID OBSTACLES 1181

Figure 8. Zoom - Midpoint P3/P0 singular mass matrix (e = 1) versus NDP regular mass
matrix (e = 0). Δt = 10−5, 100 elements.

4.3. Case of pointwise stops with e = 0 or e = 1

Here, the midpoint scheme with singular mass matrix (3.7) is compared with fully implicit NDP with regular
mass matrix (3.1). By the way, the former scheme correspond to a perfect elastic impact and the latter to an
absorbing one. The next figures give also the numerical displacement of the right edge of the beam, for the
same initial conditions as in the previous section. As expected, it can be observed bounces after impact are
generaly more important with midpoint than with NDP scheme (see zooms in Figs. 8 and 10).

4.4. Case of flat obstacles

Now, the case of a beam between two symmetric flat obstacles is considered. First, we study the effect of
mass matrix discretization on NDP scheme. All the figures of this section give the numerical displacement of
the right edge of the beam, for the same initial conditions as above. The results are very similar to those of
pointwise stops. The only point to underline is the great sensitivity of the algorithm to the use of “quadprog”
Matlab function (choice of parameters, initialization).

The following numerical tests show the effect of restitution coefficient e, which is similar to what was observed
with pointwise obstacles.

4.5. Energy conservation

In order to study conservation of energy in the previous numerical schemes, in all the next paragraphs, we
consider the case where there is no loading f(x, t) ≡ 0 for all x and t. All energy is contained in the initial
data, which read

u0(x) = 0.04 x2, v0(x) = −2 x, ∀ x ∈ [0, L].
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Figure 9. Midpoint P3/P1 singular mass matrix (e = 1) versus NDP regular mass matrix
(e = 0). Δt = 10−5, 100 elements.

Figure 10. Zoom – Midpoint P3/P1 singular mass matrix (e = 1) versus NDP regular mass
matrix (e = 0). Δt = 10−5, 100 elements.
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Figure 11. Regular versus P3/P0 and P3/P1 singular mass matrix. NDP scheme. e = 0, Δt =
10−4, 30 elements.

In the following computations, for Newmark schemes, parameter β is chosen equal to 1/2, which leads to
unconditional stability. Finally, the discrete energy En is given by

En =
1

8Δt2
(Un+1 − Un−1)T M (Un+1 − Un−1) +

1
2

(Un)T K (Un),

as there is no loading.

4.5.1. Case of pointwise stops with e = 0

In the following figures are given the energy evolutions for different time and space steps, in the frame of
Newmark-Dumont-Paoli scheme, with β = 1/2. As the restitution coefficient e is zero, this scheme is known to
be dissipative [4]. In fact, we can observe the energy remains constant between two successive impacts and is
decreasing only at these impacts. Nevertheless, when the time step goes to zero, the loss of energy is weaker
and weaker and it can be expected that energy conservation will hold at the limit.

The two next figures allow to compare the effect of mass discretization. They show that, with singular mass
matrix and for similar time steps, the loss of energy is much lower than with a regular one.

4.5.2. Case of pointwise stops with various values of e

In this section, evolution of energy is investigated for different values of the restitution coefficient e. First,
we observe the effect of the singular mass matrix discretization for e = 1, which corresponds to the case where
energy should remain constant. The figure shows that the regular mass matrix Newmark-Dumont-Paoli scheme
creates energy, so seems to strive for unstability. This effect decreases with time step. Conversely, singular mass
matrix schemes keep constant energy. Moreover, as far as midpoint scheme is considered, it is unstable with
regular mass matrix whereas it becomes stable and energy conservative with singular mass matrix (see Fig. 18).
That’s why it is compared with NDP scheme in the following figures.
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Figure 12. Midpoint P3/P0 singular mass matrix (e = 1) versus NDP regular mass matrix.
Δt = 10−4, 30 elements.

Figure 13. Midpoint P3/P1 singular mass matrix (e = 1) versus NDP regular mass matrix.
Δt = 10−4, 30 elements.
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Figure 14. Energy for different time steps – NDP scheme with regular mass matrix. e =
0, Δt = 10−4, 5.10−6, 10−6, 100 elements.

Figure 15. Energy for different time steps – Regular versus P3/P0 singular mass matrix for
NDP scheme. e = 0, Δt = 10−3, 10−4, 10−5, 39 elements.
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Figure 16. Energy for different time steps – Regular versus P3/P1 singular mass matrix for
NDP scheme. e = 0, Δt = 10−3, 10−4, 10−5, 39 elements.

Figure 17. Regular versus P3/P0 singular mass matrix. NDP scheme. e = 1, Δt =
10−4, 10−5, 19 elements.
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Figure 18. Regular versus P3/P0 singular mass matrix. Midpoint scheme. e = 1, Δt =
10−4, 10−5, 40 and 50 elements.

Figure 19. Regular NDP scheme (e = 0) versus P3/P0 and P3/P1 midpoint schemes (e = 1).
Δt = 10−4, 100 elements.
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Figure 20. Regular NDP scheme (e = 0) versus P3/P0 and P3/P1 midpoint schemes (e = 1).
Δt = 10−5, 100 elements.

Figure 21. Effect of values of e. e = 0, 0.9, 0.999, 1. P3/P0 singular mass matrix NDP
scheme. Δt = 10−5, 20 elements.
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Figure 22. Effect of values of e. e = 0, 0.9, 0.999, 1. P3/P1 singular mass matrix NDP
scheme. Δt = 10−5, 20 elements.

Figure 23. Energy for different time steps - Regular versus P3/P0 singular mass matrix for
NDP scheme. e = 0, Δt = 10−3, 10−4, 10−5, 59 elements.
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Figure 24. Energy for different time steps - Regular versus P3/P1 singular mass matrix for
NDP scheme. e = 0, Δt = 10−3, 10−4, 10−5, 59 elements.

Figure 25. Energy for different time steps - P3/P0 singular mass matrix for midpoint scheme.
e = 1, Δt = 10−4, 5.10−5, 10−5, 30/60/90 elements.
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Figure 26. Energy for different time steps – P3/P1 singular mass matrix for midpoint scheme.
e = 1, Δt = 10−4, 5.10−5, 10−5, 30 elements.

Then, for singular mass matrix Newmark-Dumont-Paoli schemes, the effect of values of e is studied. The
figures exhibit that, except when e = 1, a small loss of energy occurs at the beginning of the motion, even for
values of e close to 1.

4.5.3. Case of flat obstacles

The case of a beam between two symmetric flat obstacles is considered again. The figures allows to see that
the effect of the choice of the time step and/or the restitution coefficient is very similar to what was obtained
in the case of pointwise obstacles.

5. Conclusion

This paper presents an application of the singular dynamic method to fourth order beam impact problems.
This strategy has proved its capabilities as illustrated by numerous numerical results. The following of this work
is to improve this model by taking into account friction and damping. Furthermore, we are currently working
on extension of this study to dynamical impact of thin plates, using the Kirchhoff-Love model. Finally, using
restitution coefficient for updating numerical models will also be investigated in a forthcoming paper.
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