Free access
Issue
ESAIM: M2AN
Volume 34, Number 1, January/February 2000
Page(s) 31 - 45
DOI http://dx.doi.org/10.1051/m2an:2000129
Published online 15 April 2002
  1. G.P. Astrakhantsev, Method of fictitious domains for a second-order elliptic equation with natural boundary conditions. USSR Comput. Math. Math. Phys. 18 (1978) 114-121. [CrossRef]
  2. C. Atamian, G.V. Dinh, R. Glowinski, J. He and J. Périaux, On some imbedding methods applied to fluid dynamics and electro-magnetics. Comput. Methods Appl. Mech. Engrg. 91 (1991) 1271-1299. [CrossRef] [MathSciNet]
  3. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef]
  4. A. Bespalov, Yu.A. Kuznetsov, O. Pironneau and M.-G. Vallet, Fictitious domain with separable preconditioners versus unstructured adapted meshes. Impact Comput. Sci. Eng. 4 (1992) 217-249. [CrossRef]
  5. C. Börgers, A triangulation algorithm for fast elliptic solvers based on domain imbedding. SIAM J. Numer. Anal. 27 (1990) 1187-1196. [CrossRef] [MathSciNet]
  6. C. Börgers and O.B. Widlund, On finite element domain imbedding methods. SIAM J. Numer. Anal. 27 (1990) 963-978. [CrossRef] [MathSciNet]
  7. V. Braibant and C. Fleury, Shape optimal design using B-splines. Comput. Methods Appl. Mech. Engrg. 44 (1984) 247-267. [CrossRef]
  8. J.H. Bramble, The Lagrangian multiplier method for Dirichlet's problem. Math. Comp. 37 (1981) 1-11. [MathSciNet]
  9. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp. 47 (1986) 103-134. [CrossRef] [MathSciNet]
  10. R.A. Brockman, Geometric sensitivity analysis with isoparametric finite elements. Comm. Appl. Numer. Math. 3 (1987) 495-499. [CrossRef]
  11. T.F. Chan, Analysis of preconditioners for domain decomposition. SIAM J. Numer. Anal. 24 (1987) 382-390. [CrossRef] [MathSciNet]
  12. J. Danková and J. Haslinger, Fictitious domain approach used in shape optimization: Neumann boudary condition, in Control of Partial Differential Equations and Applications (Laredo, 1994), Lecture Notes in Pure and Appl. Math., Dekker, New York 174 (1996) 43-49.
  13. J. Danková and J. Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. I. Distributed controls. Appl. Math. 41 (1996) 123-147. [MathSciNet]
  14. P. Duysinx, W.H. Zhang and C. Fleury, Sensitivity analysis with unstructured free mesh generators in 2-D and 3-D shape optimization, in Structural Optimization 93, Vol. 2, Rio de Janeiro (1993) 205-212.
  15. P.E. Gill, W. Murray and M.H. Wright, Practical Optimization. Academic Press, New York (1981).
  16. R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Périaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 270-279.
  17. R. Glowinski and Yu.A. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrande multiplier method. C.R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693-698.
  18. R. Glowinski, T.-W. Pan, A.J. Kearsley and J. Périaux, Numerical simulation and optimal shape for viscous flow by a fictitious domain method. Internat. J. Numer. Methods Fluids 20 (1995) 695-711. [CrossRef] [MathSciNet]
  19. R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. [CrossRef] [MathSciNet]
  20. A. Greenbaum, Iterative Methods for Solving Linear Systems. Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, USA 17 (1997).
  21. J. Haslinger, Imbedding/control approach for solving optimal shape design problems. East-West J. Numer. Math. 1 (1993) 111-119. [MathSciNet]
  22. J. Haslinger, Comparison of different fictitious domain approaches used in shape optimization. Tech. Rep. 15, Laboratory of Scientific Computing, University of Jyväskylä (1996).
  23. J. Haslinger, K.H. Hoffmann and M. Kocvara, Control/fictitious domain method for solving optimal shape design problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 157-182. [MathSciNet]
  24. J. Haslinger and D. Jedelský, Genetic algorithms and fictitious domain based approaches in shape optimization. Structural Optimization 12 (1996) 257-264. [CrossRef]
  25. J. Haslinger and A. Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems. RAIRO Modél. Math. Anal. Numér. 29 (1995) 435-450. [MathSciNet]
  26. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd ed., Wiley, Chichester (1996).
  27. J. He, Méthodes de domaines fictifs en méchanique des fluides applications aux écoulements potentiels instationnaires autour d'obstacles mobiles. Ph.D. thesis, Université Paris VI (1994).
  28. E. Heikkola, Y. Kuznetsov, T. Rossi and P. Tarvainen, Efficient preconditioners based on fictitious domains for elliptic FE-problems with Lagrange multipliers, in ENUMATH 97 - Proceedings of the 2nd European Conference on Numerical Mathematics and Advanced Applications, H.G. Bock, G. Kanschat, R. Rannacher, F. Brezzi, R. Glowinski, Yu.A. Kuznetsov and J. Périaux Eds., World Scientific Publishing Co., Inc., River Edge, NJ (1998) 646-661.
  29. K. Kunisch and G. Peichl, Shape optimization for mixed boundary value problems based on an embedding method. Dynam. Contin. Discrete Impuls. Systems 4 (1998) 439-478. [MathSciNet]
  30. Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. [CrossRef] [MathSciNet]
  31. Yu.A. Kuznetsov, Iterative analysis of finite element problems with Lagrange multipliers, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 170-178.
  32. Yu.A. Kuznetsov and M.F. Wheeler, Optimal order substructuring preconditioners for mixed finite element methods on nonmaching grids. East-West J. Numer. Math. 3 (1995) 127-143. [MathSciNet]
  33. R. Mäkinen, Finite-element design sensitivity analysis for non-linear potential problems. Comm. Appl. Numer. Math. 6 (1990) 343-350. [CrossRef]
  34. G.I. Marchuk, Yu.A. Kuznetsov and A.M. Matsokin, Fictitious domain and domain decomposition methods. Soviet J. Numer. Anal. Math. Modelling 1 (1986) 3-35. [CrossRef] [MathSciNet]
  35. NAG, The NAG Fortran Library Manual: Mark 18. NAG Ltd, Oxford (1997).
  36. C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975) 617-629. [CrossRef] [MathSciNet]
  37. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984).
  38. W. Proskurowski and P.S. Vassilevski, Preconditioning capacitance matrix problems in domain imbedding. SIAM J. Sci. Comput. 15 (1994) 77-88. [CrossRef] [MathSciNet]
  39. T. Rossi, Fictitious Domain Methods with Separable Preconditioners. Ph.D. thesis, Department of Mathematics, University of Jyväskylä (1995).
  40. T. Rossi and J. Toivanen, A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (1999) 1778-1793. [CrossRef] [MathSciNet]
  41. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag, Berlin (1992).
  42. P.N. Swarztrauber, The methods of cyclic reduction and Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Rev. 19 (1977) 490-501. [CrossRef] [MathSciNet]
  43. J. Toivanen, Fictitious Domain Method Applied to Shape Optimization. Ph.D. thesis, Department of Mathematics, University of Jyväskylä (1997).
  44. L. Tomas, Optimisation de Forme et Domaines Fictifs: Analyse de Nouvelles Formulations et Aspects Algorithmiques. Ph.D. thesis, École Centrale de Lyon (1997).

Recommended for you