Free access
Issue
ESAIM: M2AN
Volume 34, Number 1, January/February 2000
Page(s) 139 - 158
DOI http://dx.doi.org/10.1051/m2an:2000135
Published online 15 April 2002
  1. J.J. Ambrosiano, S.T. Brandon, R. Löhner and C.R. DeVore, Electromagnetics via the Taylor-Galerkin finite element method on unstructured grids. J. Comput. Phys. 110 (1994) 310-319. [CrossRef]
  2. D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational fluid mechanics and heat transfer, Hemisphere, McGraw-Hill, New York (1984).
  3. F. Bourdel, P.-A. Mazet and P. Helluy, Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Computing Methods in Applied Sciences and Engineering. Nova Science Publishers, Inc., New-York (1991) 405-422.
  4. P.G. Ciarlet and J.-L. Lions Eds., Handbook of Numerical Analysis, Vol. 1. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1991).
  5. J.-P. Cioni, L. Fezoui and H. Steve, Approximation des équations de Maxwell par des schémas décentrés en éléments finis. Technical Report RR-1601, INRIA (1992).
  6. J.-P. Cioni and M. Remaki, Comparaison de deux méthodes de volumes finis en électromagnétisme. Technical Report RR-3166, INRIA (1997).
  7. J.-P. Cioni, L. Fezoui, L. Anne and F. Poupaud, A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997).
  8. G. Cohen and P. Joly Eds., Aspects récents en méthodes numériques pour les équations de Maxwell, Collection didactique INRIA, INRIA Rocquencourt, France (1998) 23-27.
  9. S. Depeyre, Étude de schémas d'ordre élevé en volumes finis pour des problèmes hyperboliques. Application aux équations de Maxwell, d'Euler et aux écoulements diphasiques dispersés. Mathématiques appliquées, ENPC, janvier (1997).
  10. R. Eymard, T. Gallouët and R. Herbin, The finite volume method. in Handbook for Numerical Analysis, North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (to appear).
  11. L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for euler simulations with unstructured meshes. J. Comput. Phys. 84 (1989) 174-206. [CrossRef]
  12. A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49 (1983) 357-393. [NASA ADS] [CrossRef] [MathSciNet]
  13. A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 36-61.
  14. A. Jameson, Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows, in 11th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, July 6-9 (1993), AIAA paper 93-3359.
  15. P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, Université de Paris VI, France (1975).
  16. R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI Conference on Numerical Methods for the Maxwell Equations, Paris, France (1989). SIAM, Philadelphia (1991).
  17. M. Remaki, A new finite volume scheme for solving Maxwell system. Technical Report RR-3725, INRIA (1999).
  18. M. Remaki, L. Fezoui and F. Poupaud, Un nouveau schéma de type volumes finis appliqué aux équations de Maxwell en milieu hétérogène. Technical Report RR-3351, INRIA (1998).
  19. J.S. Shang, A characteristic-based algorithm for solving 3D, time-domain Maxwell equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 6-9 (1992), AIAA paper 92-0452.
  20. J.S. Shang and R.M. Fithen, A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378-394. [CrossRef] [MathSciNet]
  21. V. Shankar, W.F. Hall and A.H. Mohammadian, A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77 (1989) 709-720. [CrossRef]
  22. A. Taflove, Re-inventing electromagnetics: supercomputing solution of Maxwell's equations via direct time integration on space grids. AIAA paper 92-0333 (1992).
  23. K.R. Umashankar, Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques. Wave Motion 10 (1988) 493. [CrossRef] [MathSciNet]
  24. B. Van Leer, Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 361-370.
  25. J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalr conservation laws. I. Explicite monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267-295. [MathSciNet]
  26. J.-P. Vila and P. Villedieu, Convergence de la méthode des volumes finis pour les systèmes de Friedrichs. C.R. Acad. Sci. Paris Sér. I Math. 3(325) (1997) 671-676.
  27. R.F. Warming and F. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159-179. [CrossRef]
  28. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation AP-16 (1966) 302-307.

Recommended for you