Free access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 459 - 475
DOI http://dx.doi.org/10.1051/m2an:2000151
Published online 15 April 2002
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. and Comp. Fluid Dynamics 1 (1990) 303-325. [CrossRef]
  2. V. Barbu and S. Sritharan, H-control theory of fluids dynamics. Proc. R. Soc. Lond. A 454 (1998) 3009-3033. [CrossRef]
  3. T. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and nonlinear regulartion problems in fluid mechanics, AIAA 97-1872, 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference (1997).
  4. P. Cannarsa and G. da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 90 (1990) 27-47. [CrossRef] [MathSciNet]
  5. P. Cannarsa and G. da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces, in: Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Pitman Research Notes in Mathematics Series n.268 (1992) pp. 72-85.
  6. S. Cerrai, Optimal control problem for stochastic reaction-diffusion systems with non Lipschitz coefficients (to appear).
  7. H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. [CrossRef] [MathSciNet]
  8. G. da Prato and A. Debussche, Differentiability of the transition semigroup of stochastic Burgers equation. Rend. Acc. Naz. Lincei, s.9, v. 9 (1998) 267-277.
  9. G. da Prato and A. Debussche, Dynamic Programming for the stochastic Burgers equations. Annali di Mat. Pura ed Appl. (to appear).
  10. G. da prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Acc. Lincei. s.9, v. 8 (1997) 183-188.
  11. H. Fattorini and S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A 439 (1992) 81-102. [CrossRef]
  12. F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations 20 (1995) 775-826. [CrossRef]
  13. F. Gozzi, Global Regular Solutions of Second Order Hamilton-Jacobi Equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl. 198 (1996) 399-443. [CrossRef] [MathSciNet]
  14. P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math. 161 (1988) 243-278. [CrossRef] [MathSciNet]
  15. Part II: Optimal control of Zakai's equation, in Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Lecture Notes in Mathematics No. 1390, Springer-Verlag (1990) 147-170. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal. 86 (1991) 1-18.
  16. S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett. 16 (1991) 299-307. [CrossRef]
  17. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow, in Optimal control of viscous flows, p. 1-42, SIAM, Philadelphia, S. Sritharan Ed.
  18. A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with "unbounded'' terms in infinite dimensions, Ph.D. thesis, University of California at Santa Barbara (1993).
  19. R. Temam, T. Bewley and P.Moin, Control of turbulent flows, Proc. of the 18th IFIP TC7, Conf. on system modelling ond optimization, Detroit, Michigan (1997).
  20. R. Temam, The Navier-Stokes equation, North-Holland (1977).

Recommended for you