Free access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 501 - 523
DOI http://dx.doi.org/10.1051/m2an:2000153
Published online 15 April 2002
  1. J. Albert, J. Bona and J.C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. Lond. A 453 (1997) 1213-1260.
  2. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiel et théorème de Nash-Moser. Éditions du CNRS, EDP Sciences (1991).
  3. J.M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves. J. Fourier Anal. and Appl. 5 (1996) 507-517.
  4. J. Bona, G. Ponce, J.C. Saut and M. Tom, A model system for strong interaction between internal solitary waves. Comm. Math. Phys. 143 (1992) 287-313. [CrossRef] [MathSciNet]
  5. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'ENS 14 (1981) 209-246.
  6. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993) 107-156. [CrossRef] [MathSciNet]
  7. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation. GAFA 3 (1993) 209-262. [CrossRef] [MathSciNet]
  8. J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. GAFA 3 (1993) 315-341. [CrossRef] [MathSciNet]
  9. J.-Y. Chemin, Fluid parfaits incompressibles. Astérisque 230 (1995).
  10. R. Coifman and Y. Meyer, Au delà des operateurs pseudodifférentiels. Astérisque 57 (1978).
  11. I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. [CrossRef] [MathSciNet]
  12. J.A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65 (1984) 235-258.
  13. J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki 796, Astérique 237 (1995) 163-187.
  14. J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. [CrossRef] [MathSciNet]
  15. R. Grimshaw, Y. Zhu, Oblique interactions between internal solitary waves. Stud. Appl. Math. 92 (1994) 249-270.
  16. D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36.
  17. R.J. Iório Jr, W.V.L. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh A 128 (1998) 725-743.
  18. P. Isaza, J. Mejia and V. Stallbohm, El problema de Cauchy para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev Hs, s>0, preprint (1997).
  19. F. Linares, L2 global well-posedness of the initial value problem associated to the Benjamin equation. J. Differential Equations 152 (1999) 377-393. [CrossRef] [MathSciNet]
  20. C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equations. J. AMS 9 (1996) 573-603.
  21. C. Kenig, G. Ponce and L. Vega, Quadratic forms for 1-D semilinear Schrödinger equation. Trans. Amer. Math. Soc. 348 (1996) 3323-3353. [CrossRef] [MathSciNet]
  22. J.C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations. Indiana Univ. Math. J. 42 (1993) 1017-1029.
  23. R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44 (1977) 705-714. [CrossRef] [MathSciNet]
  24. H. Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, preprint (1998).
  25. N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation. Diff. Int. Eq. (to appear).

Recommended for you