Free access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 353 - 376
DOI http://dx.doi.org/10.1051/m2an:2000145
Published online 15 April 2002
  1. P. Constantin and C. Foias, Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988).
  2. N. Dunford and J.T. Schwartz, Book Linear Operators, Wiley, New York (1958) Part II.
  3. C. Foias, What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180.
  4. C. Foias, O.P. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118. [MathSciNet]
  5. C. Foias, O.P. Manley and R. Temam, Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911.
  6. C. Foias, O.P. Manley and R. Temam, Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583. [CrossRef]
  7. C. Foias, O.P. Manley, R. Temam and Y.M. Treve, Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188. [CrossRef] [MathSciNet]
  8. C. Foias and B. Nicolaenko, On the algebra of the curl operator in the Navier-Stokes equations (in preparation).
  9. R.H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (19671) 417-1423.
  10. W. Heisenberg, On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. Lond. Ser. A. 195 (1948) 402-406. [CrossRef]
  11. E. Hopf, A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322.
  12. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York (1997).
  13. T. von Karman, Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6.

Recommended for you