Free access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 707 - 722
DOI http://dx.doi.org/10.1051/m2an:2000163
Published online 15 April 2002
  1. S. Andrieux, A. Ben Abda et M. Jaoua, Identifiabilité de frontiètres inaccessibles par une mesure unique de surface. Annales Maghrébines de l'Ingénieur, 7 (1993) 5-24.
  2. A. Ben Abda, S. Chaabane, F. El Dabaghi et M. Jaoua, On a non linear geometrical inverse problem of Signorini type: identifiability and stability. Math. Meth. in the Appl. Sci. 21 (1998) 1379-1398. [CrossRef]
  3. F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. Sinum (à paraître).
  4. F. Brezzi, W.W. Hager et P.A. Raviart Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431-443. [CrossRef] [MathSciNet]
  5. S. Chaabane et M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inverse Problems 15 (1999) 1425-1438. [CrossRef] [MathSciNet]
  6. F. Hettlich et W. Rundell Iterative methods for the reconstraction of an inverse potential problem. Inverse Problems 12 (1996) 251-266.
  7. K. Khodja et M. Moussaoui, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Diff. Eq. 17 (1992) 805-826. [CrossRef] [MathSciNet]
  8. R.V. Kohn et A. McKenney Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6 (1990) 389-414.
  9. R.V. Kohn et M. Vogelius, Determinig conductivity by boundary measurements; interior results. Comm. Pure Appl. Math. 38 (1985) 644-667.
  10. R.V. Kohn et M. Vogelius, Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40 (1987) 745-777. [CrossRef] [MathSciNet]
  11. K. Kunisch et X. Pan, Estimation of interfaces from boundary measurements. SIAM J. Cont. Opt. 32 (1994) 867-894.
  12. J.L.M. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969).
  13. J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, tome 1. Dunod, Paris (1968).
  14. J.R. Roche et J. Sokolowski, Numerical methods for shape identification problems. Control and Cybernetics 25 (1996) 867-894. [MathSciNet]
  15. J. Simon, Differentiation with respect to the domaine in boundary value problems. Num. Func. Anal. Opt. 2 (1980) 649-687. [CrossRef] [MathSciNet]
  16. J. Sokolowski et J.P. Zolesio, Introduction to shape optimization; shape sensitivity analysis. Springer Verlag (1992).

Recommended for you