Free access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 539 - 554
DOI http://dx.doi.org/10.1051/m2an:2000155
Published online 15 April 2002
  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II. Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92.
  2. A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. [CrossRef]
  3. A.V. Babin and M.I. Vishik, Attractors of evolution equations. North-Holland, Amsterdam (1991).
  4. H. Brezis, Analyse fonctionnelle, théorie et applications. Masson (1983).
  5. J.W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795-801. [CrossRef]
  6. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267. [CrossRef]
  7. M. Carrive, A. Miranville, A. Piétrus and J.M. Rakotoson, The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. [CrossRef]
  8. M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear).
  9. V.V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. [MathSciNet]
  10. L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted).
  11. J.W. Cholewe and T. Dlotko, Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. [CrossRef] [MathSciNet]
  12. A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. [CrossRef]
  13. A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. Masson (1994).
  14. M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Formula with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. [CrossRef]
  15. C.M. Elliot and S. Luckhauss, A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint.
  16. P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. [CrossRef]
  17. C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996).
  18. C. Galusinski, M. Hnid and A. Miranville, Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. [MathSciNet]
  19. M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. [CrossRef] [MathSciNet]
  20. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).
  21. D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998).
  22. M. Marion and R. Temam, Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions eds. (to appear).
  23. A. Miranville, Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. [CrossRef]
  24. A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150.
  25. A. Miranville, Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear).
  26. A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case. C. R. Acad. Sci. 328 (1999) 907-912.
  27. A. Miranville, Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100.
  28. A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252.
  29. A. Miranville, A. Piétrus and J.M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345.
  30. B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. [CrossRef] [MathSciNet]
  31. R. Temam, Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997).

Recommended for you