Free access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 687 - 706
DOI http://dx.doi.org/10.1051/m2an:2000162
Published online 15 April 2002
  1. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994).
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York (1991).
  3. S.J. Chapman, A mean-field model of superconducting vortices in three dimensions. SIAM J. Appl. Math. 55 (1995) 1259-1274. [CrossRef] [MathSciNet]
  4. S.J. Chapman and G. Richardson, Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. [CrossRef] [MathSciNet]
  5. S.J. Chapman, J. Rubenstein, and M. Schatzman, A mean-field model of superconducting vortices. Euro. J. Appl. Math. 7 (1996) 97-111.
  6. Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. (Preprint, 1998).
  7. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581.
  8. Q. Du, Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998).
  9. Q. Du, M. Gunzburger, and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. [CrossRef] [MathSciNet]
  10. Q. Du, M. Gunzburger, and J. Peterson, Computational simulations of type-II superconductivity including pinning mechanisms. Phys. Rev. B 51 (1995) 16194-16203. [CrossRef]
  11. Q. Du, M. Gunzburger and H. Lee, Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999).
  12. Q. Du and Gray, High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. [CrossRef] [MathSciNet]
  13. W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383-404. [CrossRef] [MathSciNet]
  14. C. Elliott and V. Styles, Numerical analysis of a mean field model of superconductivity. preprint.
  15. V. Girault and -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986).
  16. Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
  17. C. Huang and T. Svobodny, Evolution of Mixed-state Regions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. [CrossRef] [MathSciNet]
  18. Lesaint and P.A. Raviart, On a Finite Element Method for Solving the Neutron Transport equation, in: Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974).
  19. L. Prigozhin, On the Bean critical-state model of superconductivity. Euro. J. Appl. Math. 7 (1996) 237-247.
  20. L. Prigozhin, The Bean model in superconductivity: variational formulation and numerical solution. J. Com Phys. 129 (1996) 190-200. [CrossRef] [MathSciNet]
  21. Raviart and J. Thomas, A mixed element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element Method, Lecture Notes on Mathematics, Springer, Berlin 606 (1977).
  22. R. Schatale and V. Styles, Analysis of a mean field model of superconducting vortices (preprint).
  23. R. Temam, Navier-Stokes equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984).

Recommended for you