Free access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 873 - 911
DOI http://dx.doi.org/10.1051/m2an:2000107
Published online 15 April 2002
  1. S. Alinhac and P. Gerard, Opérateurs pseudo-différentiels et thérorème de Nash-Moser. Interéditions/Éditions du CNRS (1991).
  2. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear, dispersive systems. Philos. Trans. Roy. Soc. Lond. A 272 (1972) 47-78. [CrossRef] [MathSciNet]
  3. W. Ben Youssef, The global Cauchy problem for Korteweg-de Vries type systems describing counter-propagating waves. MAB, Université Bordeaux I, preprint (1999).
  4. W. Ben Youssef, Conservative, high order schemes and numerical study of a coupled system of Korteweg-de Vries type. Université de Bordeaux I, preprint (1999).
  5. J.L. Bona and H. Chen, Lecture notes in Austin. Texas Institute for Computational and Applied Mathematics (1997).
  6. J.L. Bona and H. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116 (1998) 191-224. [CrossRef] [MathSciNet]
  7. J.L. Bona, H. Chen and J.C. Saut, personal communications.
  8. J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. Lond. A 278 (1975) 555-604. [CrossRef] [MathSciNet]
  9. J. Bourgain, Fourier transform restriction phenomena for certain lattice substes and applications to nonlinear evolution equations. II. The Korteweg-de Vries equation. Geom. Funct. Anal. 3 (1993) 209-262. [CrossRef] [MathSciNet]
  10. S. Cordier and E. Grenier, Quasineutral limit of Euler-Poisson system arising from plasma physics. Université de Paris VI, preprint (1997).
  11. W. Craig, An existence theory for water waves and the Boussinesq and the Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985) 787-1003. [CrossRef] [MathSciNet]
  12. T. Colin, Rigorous derivation of the nonlinear Schrodinger equation and Davey-Stewartson systems from quadratic hyperbolic systems. Université de Bordeaux I, preprint No. 99001 (1999).
  13. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris, Solitons and nonlinear wave equations. Academic Press (1982).
  14. P. Donnat, J.L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics. I. Séminaire équations aux dérivées partielles. École Polytechnique, Palaiseau, exposé No. XVII-XVIII (1995-1996).
  15. J.L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics with rectification. Indiana Univ. Math. J. 47 (1998) 1167-1241. [MathSciNet]
  16. J.L. Joly, G. Metivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70 (1993) 373-404. [CrossRef] [MathSciNet]
  17. T. Kato, Perturbation theory for linear operators. Grundlehren Math. Wiss. 132 (1966).
  18. C.E. Kenig, G. Ponce and L. Vega, Well posedness and scaterring results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 527-620.
  19. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave. Phil. Mag. 39 (1895) 422-443.
  20. D. Lannes, Dispersive effects for nonlinear geometrical optics with rectification. Asymptot. Anal. 18 (1998) 111-146. [MathSciNet]
  21. G. Schneider and C.E. Wayne, The long wave limit for the water wave problem. I. The case of zero surface tension. University of Bayreuth, preprint (1999).
  22. G.B. Whitham, Linear and nonlinear waves. J. Wiley, New York (1974).
  23. N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965) 240. [CrossRef]

Recommended for you