Free access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 749 - 774
DOI http://dx.doi.org/10.1051/m2an:2000102
Published online 15 April 2002
  1. G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610.
  2. V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983. [CrossRef] [PubMed]
  3. V. Bonač ic-Koutecký and J. Koutecký, General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180. [CrossRef]
  4. J.C. Facelli and R.H. Contreras, A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423. [CrossRef]
  5. R. Fletcher, Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63. [CrossRef]
  6. D.R. Hartree, The calculation of atomic structures. Wiley (1957).
  7. W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986).
  8. A. Igawa and H. Fukutome, A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281. [CrossRef]
  9. J. Koutecký and V. Bonačic, On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413. [CrossRef]
  10. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105.
  11. E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028. [CrossRef]
  12. E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys. 53 (1977) 185-194. [CrossRef] [MathSciNet]
  13. P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. [CrossRef] [MathSciNet]
  14. R. McWeeny, The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. [CrossRef] [MathSciNet]
  15. R. McWeeny, Methods of molecular Quantum Mechanics. Academic Press (1992).
  16. J. Paldus, Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45.
  17. P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560. [CrossRef]
  18. M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980).
  19. M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978).
  20. C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. [CrossRef]
  21. V.R. Saunders and I.H. Hillier, A ``level-shifting'' method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705. [CrossRef]
  22. H.B. Schlegel and J.J.W. McDouall, Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185.
  23. R. Seeger R. and J.A. Pople, Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271. [CrossRef]
  24. R.E. Stanton, The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432. [CrossRef]
  25. R.E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422. [CrossRef]
  26. M.C. Zerner and M. Hehenberger, A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554. [CrossRef]

Recommended for you