Free access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 775 - 797
DOI http://dx.doi.org/10.1051/m2an:2000103
Published online 15 April 2002
  1. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. [CrossRef] [MathSciNet]
  2. Z. Chen, R.H. Nochetto and A. Schmidt, Adaptive finite element methods for diffuse interface models (in preparation).
  3. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  4. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84.
  5. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. [CrossRef] [MathSciNet]
  6. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. [CrossRef] [MathSciNet]
  7. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325. [CrossRef] [MathSciNet]
  8. P. Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
  9. X. Jiang and R.H. Nochetto, Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér. 31 (1997) 91-120. [MathSciNet]
  10. X. Jiang and R.H. Nochetto, A P1-P1 finite element method for a phase relaxation model. I. Quasi uniform mesh. SIAM J. Numer. Anal. 35 (1998) 1176-1190. [CrossRef] [MathSciNet]
  11. X. Jiang, R.H. Nochetto and C. Verdi, A P1-P1 finite element method for a phase relaxation model. II. Adaptively refined meshes. SIAM J. Numér. Anal. 36 (1999) 974-999. [CrossRef] [MathSciNet]
  12. R.H. Nochetto, M. Paolini and C. Verdi, Continuous and semidiscrete traveling waves for a phase relaxation model. European J. Appl. Math. 5 (1994) 177-199. [MathSciNet]
  13. R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Sér. I 326 (1998) 1437-1442.
  14. R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 529-589.
  15. R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1-24. [CrossRef] [MathSciNet]
  16. C. Verdi and A. Visintin, Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Un. Mat. Ital. B 7 (1987) 795-814.
  17. C. Verdi and A. Visintin, Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math. 52 (1988) 165-185. [CrossRef] [MathSciNet]
  18. A. Visintin, Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985) 225-245. [CrossRef] [MathSciNet]
  19. A. Visintin, Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1986) 233-256. [CrossRef]

Recommended for you