Free access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 859 - 872
DOI http://dx.doi.org/10.1051/m2an:2000100
Published online 15 April 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. C. Bernardi and Y. Maday, Spectral methods, in Techniques of Scientific Computing, Part 2, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1997) 209-486.
  3. O. Coulaud, D. Funaro and O. Kavian, Laguerre spectral approximation of elliptic problems in exterior domains. Comp. Mech. Appl. Mech. Eng. 80 (1990) 451-458. [CrossRef]
  4. R. Courant, K.O. Friedrichs and H. Levy, Über die partiellen differezengleichungen der mathematischen physik. Math. Annal. 100 (1928) 32-74. [NASA ADS] [CrossRef] [MathSciNet]
  5. D. Funaro, Estimates of Laguerre spectral projectors in Sobolev spaces, in Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux Eds., Scientific Publishing Co. (1991) 263-266.
  6. D. Funaro and O. Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comp. 57 (1990) 597-619. [CrossRef]
  7. B.Y. Guo, A class of difference schemes of two-dimensional viscous fluid flow. TR. SUST (1965). Also see Acta Math. Sinica 17 (1974) 242-258.
  8. B.Y. Guo, Generalized stability of discretization and its applications to numerical solution of nonlinear differential equations. Contemp. Math. 163 (1994) 33-54.
  9. B.Y. Guo, Spectral Methods and Their Applications. World Scientific, Singapore (1998).
  10. B.Y. Guo, Error estimation for Hermite spectral method for nonlinear partial differential equations. Math. Comp. 68 (1999) 1067-1078. [CrossRef] [MathSciNet]
  11. A.L. Levin and D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevais conjecture for Freud weights. Constr. Approx. 8 (1992) 461-533.
  12. D.S. Lubinsky and F. Moricz, The weighted Lp-norm of orthogonal polynomial of Freud weights. J. Approx. Theory 77 (1994) 42-50. [CrossRef] [MathSciNet]
  13. Y. Maday, B. Pernaud-Thomas and H. Vandeven, Une réhabilitation des méthodes spectrales de type Laguerre. Rech. Aérospat. 6 (1985) 353-379.
  14. R.D. Richitmeyer and K.W. Morton, Finite Difference Methods for Initial Value Problems, 2nd ed., Interscience, New York (1967).
  15. H.J. Stetter, Stability of nonlinear discretization algorithms, in Numerical Solutions of Partial Differential Equations, J. Bramble Ed., Academic Press, New York (1966) 111-123.
  16. G. Szegö, Orthogonal Polynomials. Amer. Math. Soc., New York (1967).
  17. A.F. Timan, Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963).

Recommended for you