Free access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 799 - 810
DOI http://dx.doi.org/10.1051/m2an:2000104
Published online 15 April 2002
  1. R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. [CrossRef] [MathSciNet]
  2. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993).
  3. A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. [CrossRef] [MathSciNet]
  4. G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. [CrossRef] [EDP Sciences] [MathSciNet]
  5. D. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. [CrossRef] [MathSciNet]
  6. D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. [CrossRef] [MathSciNet]
  7. I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983).
  8. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
  9. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977).
  10. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984).
  11. K. Ito and K. Kunisch, An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél. Math. Anal. Numér. 33 (1999) 1-21.
  12. K. Ito and K. Kunisch, BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. [CrossRef] [MathSciNet]
  13. M.Z. Nashed and O. Scherzer, Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. [CrossRef] [MathSciNet]
  14. M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear).
  15. L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. [NASA ADS] [CrossRef]
  16. W. Rudin, Real and Complex Analysis, 3rd edn. McGraw-Hill, New York-St Louis-San Francisco (1987).
  17. C. Vogel and M. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. [CrossRef]
  18. W.P. Ziemer, Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989).

Recommended for you