Free access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 1023 - 1049
DOI http://dx.doi.org/10.1051/m2an:2000114
Published online 15 April 2002
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New-York (1972).
  2. N. Bartoli, Higher Order Effective Boundary Conditions for Perfectly Conducting Scatterers Coated by a thin Dielectric Layer. PhD thesis, INSA, Toulouse (to appear).
  3. N. Bartoli and A. Bendali, Higher order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer and their boundary element solution (to be submitted).
  4. A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition, in Partial differential equations, Theory and numerical solution, W. Jäger, J. Necas, O. John, K. Najzar and J. Stará, Eds. Chapman & Hall/CRC, 406 (1999) 10-24.
  5. A. Bendali and L. Vernhet, Résolution par élements finis de frontière d'un problème de diffraction d'onde comportant une condition aux limites d'impédance généralisée. C. R. Acad. Sci. Paris, 321 (1995) 791-797.
  6. F. Brezzi and M. Fortin, in Mixed and Hybrid Finite Element Method, volume 15, Springer-Verlag (1991).
  7. D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetric inconsistent linear systems. in Proceedings of the Cornelius Lanczos International Centenary Conference, J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds. SIAM, Philadelphia (1994) 267-272.
  8. G. Chen and J. Zhou, in Boundary element Methods. Academic Press, London (1992).
  9. F. Collino and B. Després, Integral equations via saddle point problems for time-harmonic Maxwell's equations. SIAM J. Appl. Math. (submitted).
  10. D. Colton and R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory, 93, Springer-Verlag (1992).
  11. B. Després, Quadractic functional and integral equations for harmonic wave problems in exterior domains. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 679-732.
  12. V. Frayssé, L. Giraud and S. Gratton, A set of GMRES routines for real and complex arithmetics. Technical report, Cerfacs TR/PA/97/49, Toulouse, France (1997).
  13. V. Girault and P.A. Raviart, in Finite Element methods for Navier-Stokes Equations, Theory and Algorithms, 5, Springer-Verlag (1986).
  14. G.H. Golub and C.F. Van Loan, in Matrix Computations, 3rd edn., Chap. 9-10, The Johns Hopkins University Press, Baltimore (1996).
  15. B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal., 164 (1999) 340-355. [CrossRef] [MathSciNet]
  16. Y. Saad, in Iterative methods for sparse linear systems. PWS publishing (1995).

Recommended for you