Free access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 1051 - 1067
DOI http://dx.doi.org/10.1051/m2an:2000115
Published online 15 April 2002
  1. R.A. Adams, Sobolev Space. Academic Press, New York (1975).
  2. C. Amrouche and V. Girault, Propriétés fonctionnelles d'opérateurs. Application au problème de stokes en dimension qualconque. Publications du Laboratoire d'Analyse Numérique, No. 90025, Université Piere et Marie Curie, Paris, France (1990).
  3. D.N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations, edited by C. Baiocchi and J.L. Lions. Masson, Paris (1992) 287-292.
  4. J. Baranger, K. Najib and D. Sandri, Numerical analysis of a three-field model for a Quasi-Newtonian flow. Comput. Methods. Appl. Mech. Engrg. 109(1993) 281-292.
  5. J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a Non-Newtonian flow. Numer. Math. 61 (1994) 437-456. [CrossRef] [MathSciNet]
  6. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991) 581-590.
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Methods. Springer-Verlags, New York (1991).
  8. P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978).
  9. M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulations of Non-Newtonian Flow. Elsevier, Amsterdam, Rheology Series 1 (1984).
  10. M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75.
  11. M. Fortin, Old and new finite elements for incompressible flows. Internat. J. Numer. Methods Fluids 1 (1981) 347-364. [CrossRef] [MathSciNet]
  12. M. Fortin, R. Guénette and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. [CrossRef] [MathSciNet]
  13. M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. [CrossRef] [MathSciNet]
  14. V. Girault and R.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin-New York (1986).
  15. P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equation using the finite element technique. Comput and Fluids 1 (1973) 73-100. [CrossRef] [MathSciNet]
  16. A.F.D. Loula and J.W.C. Guerreiro, Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Engrg. 79 (1990) 89-109.
  17. J. Malek and S.J. Necas, Weak and Measure-valued Solution to Evolutionary Partial Differential Equations. Chapman & Hall (1996).
  18. Pingbing Ming and Zhong-ci Shi, Dual combined finite element methods for Non-Newtonian flow (I) Nonlinear Stabilized Methods (1998 Preprint)
  19. Pingbing Ming and Zhong-ci Shi, A technique for the analysis of B-B inequality for non-Newtonian flow (1998 Preprint).
  20. D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Math. Anal. Numér. 27 (1993) 817-841.
  21. D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscoélastiques suit la Loi Puissance ou le modèle de Carreau. RAIRO-Modèl. Math. Anal. Numér. 27 (1993) 131-155. [MathSciNet]
  22. D. Sandri, A posteriori estimators for mixed finite element approximation of a fluid obeying the power law. Comput. Meths. Appl. Mech. Engrg. 166 (1998) 329-340. [CrossRef]
  23. C. Schwab and M. Suri, Mixed h-p finite element methods for Stokes and non-Newtonian Flow. Research report No. 97-19, Seminar für Angewandte Mathematik, ETH Zürich (1997).
  24. B. Szabó and I. Babuska, Finite Element Analysis. John & Sons, Inc. (1991).
  25. Tianxiao Zhou, Stabilized finite element methods for a model parameter-dependent problem, in Proc. of the Second Conference on Numerical Methods for P.D.E, edited by Longan Ying and Benyu Guo. World Scientific, Singapore (1991) 192-194.

Recommended for you