Free access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 923 - 934
DOI http://dx.doi.org/10.1051/m2an:2000109
Published online 15 April 2002
  1. C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988).
  2. C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791.
  3. H. Bellout, F. Bloom and J. Necas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differential Equations 19 (1994) 1763-1803. [CrossRef]
  4. Beirão da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys. 109 (1987) 229-248. [CrossRef]
  5. D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade. Collège de France Seminars, Pitman Res. Notes Math. Ser. 109 (1984) 178-197.
  6. E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. [CrossRef] [MathSciNet]
  7. E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999).
  8. G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103.
  9. G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. [CrossRef]
  10. D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990)
  11. J. Málek , J. Necas, M. Rokyta and R. Ruzicka, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996).
  12. A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity I. Siberian Math. J. 40 (1999) 351-362. [MathSciNet]
  13. A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555. [CrossRef] [MathSciNet]
  14. S Matusu-Necasová and M. Medvi1=d to 1.051d'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483. [MathSciNet]
  15. S. Matusu-Necasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. [CrossRef] [MathSciNet]
  16. S. Matusu-Necasová and M. Medvi1=d to 1.051d'ová-Lukácová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192. [CrossRef] [MathSciNet]
  17. J. Necas and M. Silhavý, Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266.
  18. J. Necas, A. Novotný and M. Silhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret. Comp. Fluid Dynamics 4 (1992) 1-11. [CrossRef]
  19. J. Necas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244.
  20. J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed., Pitman Res. Notes Math. Ser. 388 (1998) 86-100.
  21. J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods Appl. Sci. 14 (1991) 93-119. [CrossRef] [MathSciNet]
  22. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541.
  23. K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993).
  24. M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987).
  25. R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51.
  26. W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).
  27. M.H. Sy, Contributions à l'etude mathématique des problèmes isssus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).
  28. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992).

Recommended for you