Free access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 953 - 980
DOI http://dx.doi.org/10.1051/m2an:2000111
Published online 15 April 2002
  1. K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958).
  2. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef]
  3. C. Bergé, Théorie des graphes. Dunod, Paris (1970).
  4. J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. [CrossRef] [MathSciNet]
  5. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér. 8 R2 (1974) 129-151.
  6. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351.
  7. P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér. 7 R3 (1973) 33-76.
  9. P. Emonot, Méthodes de volumes éléments finis: application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).
  10. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér. 11 R3 (1977) 341-354.
  11. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986).
  12. F. Hecht, Construction d'une base d'un élément fini P1 non conforme à divergence nulle dans Formula . Thesis, Université Pierre et Marie Curie, Paris (1980).
  13. F. Hecht, Construction d'une base de fonctions P1 non conforme à divergence nulle dans Formula . RAIRO - Anal. Numér. 15 (1981) 119-150. [MathSciNet]
  14. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér. 18 (1984) 175-182. [MathSciNet]

Recommended for you