Free access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 1087 - 1106
DOI http://dx.doi.org/10.1051/m2an:2000117
Published online 15 April 2002
  1. B. Achchab, A. Agouzal, J. Baranger and J-F. Maître, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. [CrossRef] [MathSciNet]
  2. D.N. Arnold and F. Brezzi, Mixed and non-conforming finite elements methods: implementation, postprocessing and error estimates. RAIRO - Modél. Math. Anal. Numér. 19 (1985) 7-32. [MathSciNet]
  3. I. Babuska, Error-Bounds for Finite Elements Method. Numer. Math. 16 (1971) 322-333. [CrossRef] [MathSciNet]
  4. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. [CrossRef] [MathSciNet]
  5. J. Baranger, J.F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér. 30 (1996) 445-465. [MathSciNet]
  6. C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t.303, Série I 19 (1986) 971-974.
  7. C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. [CrossRef] [MathSciNet]
  8. D. Braess, Finite Elements. Cambridge Univ. Press (1997).
  9. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15 (1994) Springer, New-York.
  10. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO 8 (1974) R-2, 129-151.
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math. 15, Springer Verlag, New-York (1991).
  12. F. Brezzi, J. Douglas and L.D. Marini, Two families of Mixed Finite Element for second order elliptic problems. Numer. Math. 47 (1985) 217-235. [CrossRef] [MathSciNet]
  13. Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. [CrossRef] [MathSciNet]
  14. F. Casier, H. Deconninck and C. Hirsch, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations. AIAA-83-0126 (1983).
  15. J.J. Chattot, Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331.
  16. J.J. Chattot, A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear).
  17. J.J. Chattot and S. Malet, A box-schemefor the Euler equations. Lect. Notes Math. 1270, Springer-Verlag, Berlin (1987) 82-99.
  18. Y. Coudière, J-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer. 33 (1999) 493-516. [CrossRef] [EDP Sciences] [MathSciNet]
  19. B. Courbet, Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished.
  20. B. Courbet, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n°4 (1990) 21-46.
  21. B. Courbet, Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n°5 (1991) 31-44.
  22. B. Courbet and J.P. Croisille, Finite Volume Box Schemes on triangular meshes. Math. Model. Numer. 32 (1998) 631-649.
  23. J-P. Croisille, Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999).
  24. M. Crouzeix and P.A. Raviart, Conforming and non conforming finite element methods for solving the stationary Stokes equations I. RAIRO 7 (1973) R-3, 33-76.
  25. F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear).
  26. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997).
  27. G. Fairweather and R.D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput. 12 (1991) 127-144. [CrossRef]
  28. L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys. 84 (1989) 174-206. [CrossRef]
  29. V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math. 749, Springer, Berlin (1979).
  30. W. Hackbusch, On first and second order box schemes. Computing 41 (1989) 277-296. [CrossRef] [MathSciNet]
  31. H.B. Keller, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350.
  32. R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999).
  33. L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. [CrossRef] [MathSciNet]
  34. P.C. Meek and J. Norbury, Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21 (1984) 883-893. [CrossRef] [MathSciNet]
  35. R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. [CrossRef] [MathSciNet]
  36. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606, Springer-Verlag, Berlin (1977) 292-315.
  37. E. Süli, Convergence of finite volume schemes for Poisson's equation on non-uniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. [CrossRef] [MathSciNet]
  38. E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp. 59 (1992) 359-382. [CrossRef] [MathSciNet]
  39. T. Schmidt, Box Schemes on quadrilateral meshes. Computing 51 (1993) 271-292. [CrossRef] [MathSciNet]
  40. J-M Thomas and D. Trujillo, Mixed Finite Volume methods. Int. J. Num. Meth. Eng. 45 (1999) to appear.
  41. S.F. Wornom, Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem. 83262 (1982).
  42. S.F. Wornom and M.M. Hafez, Implicit conservative schemes for the Euler equations. AIAA J. 24 (1986) 215-233. [CrossRef] [MathSciNet]
  43. A. Younes, R. Mose, P. Ackerer and G. Chavent, A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys. 149 (1999) 148-167. [CrossRef] [MathSciNet]

Recommended for you