Free access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1123 - 1149
DOI http://dx.doi.org/10.1051/m2an:2000120
Published online 15 April 2002
  1. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. [CrossRef] [MathSciNet]
  2. J. Baranger, J.F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. [MathSciNet]
  3. M.J. Berger and P. Collela, Local adaptative mesh refinement for shock hydrodynamics. J. Comput. Phys. 82 (1989) 64-84. [NASA ADS] [CrossRef]
  4. Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713-735. [CrossRef] [MathSciNet]
  5. Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. [CrossRef] [MathSciNet]
  6. Z. Cai and S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal. 27 (1990) 636-655. [CrossRef] [MathSciNet]
  7. W.J. Coirier, An Adaptatively-Refined, Cartesian, Cell-based Scheme for the Euler and Navier-Stokes Equations. Ph.D. thesis, Michigan Univ., NASA Lewis Research Center (1994).
  8. W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA (1995).
  9. Y. Coudière, Analyse de schémas volumes finis sur maillages non structurés pour des problèmes linéaires hyperboliques et elliptiques. Ph.D. thesis, Université Paul Sabatier (1999).
  10. Y. Coudière, T. Gallouët and R. Herbin, Discrete sobolev inequalities and lp error estimates for approximate finite volume solutions of convection diffusion equation. Preprint of LATP, University of Marseille 1, 98-13 (1998).
  11. Y. Coudière, J.P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensionnal diffusion convection problem. ESAIM: M2AN 33 (1999) 493-516. [CrossRef] [EDP Sciences] [MathSciNet]
  12. B. Courbet and J.P. Croisille, Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. [MathSciNet]
  13. M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Lect. Notes Math., Springer-Verlag, Berlin (1988).
  14. R.E. Ewing, R.D. Lazarov and P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis. Math. Comp. 56 (1991) 437-461. [MathSciNet]
  15. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds. (to appear). Prépublication No 97-19 du LATP, UMR 6632, Marseille (1997).
  16. P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. [CrossRef] [MathSciNet]
  17. B. Heinrich, Finite Difference Methods on Irregular Networks. Internat. Ser. Numer. Anal. 82, Birkhaüser, Verlag Basel (1987).
  18. R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differential Equations 11 (1994) 165-173. [CrossRef] [MathSciNet]
  19. F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA (1994).
  20. H. Jianguo and X. Shitong, On the finite volume element method for general self-adjoint elliptic problem. SIAM J. Numer. Anal. 35 (1998) 1762-1774. [CrossRef] [MathSciNet]
  21. P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Technical report, CEA (1976).
  22. T.A. Manteuffel and A.B. White, The numerical solution of second-order boundary values problems on nonuniform meshes. Math. Comp. 47 (1986) 511-535. [CrossRef] [MathSciNet]
  23. K. Mer, Variational analysis of a mixed finite element finite volume scheme on general triangulations. Technical Report 2213, INRIA, Sophia Antipolis (1994).
  24. I.D. Mishev, Finite volume methods on voronoï meshes. Numer. Methods Partial Differential Equations 14 (1998) 193-212. [CrossRef] [MathSciNet]
  25. K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. [CrossRef] [MathSciNet]
  26. E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. [CrossRef] [MathSciNet]
  27. J.-M. Thomas and D. Trujillo. Analysis of finite volumes methods. Technical Report 95/19, CNRS, URA 1204 (1995).
  28. J.-M. Thomas and D. Trujillo, Convergence of finite volumes methods. Technical Report 95/20, CNRS, URA 1204 (1995).
  29. R. Vanselow and H.P. Scheffler, Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. [CrossRef] [MathSciNet]
  30. P.S. Vassilevski, S.I. Petrova and R.D. Lazarov. Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Stat. Comput. 13 (1992) 1287-1313. [CrossRef] [MathSciNet]
  31. A. Weiser and M.F. Wheeler, On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351-375. [CrossRef] [MathSciNet]

Recommended for you