Free access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1151 - 1163
DOI http://dx.doi.org/10.1051/m2an:2000121
Published online 15 April 2002
  1. C. Boldrighini, L.A. Bunimovich and Ya.G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983) 477-501. [CrossRef] [MathSciNet]
  2. J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. [CrossRef] [MathSciNet]
  3. L.A. Bunimovich and Ya.G. Sinai, Markov Partitions of Dispersed Billiards. Comm. Math. Phys. 73 (1980) 247-280. [CrossRef] [MathSciNet]
  4. L.A. Bunimovich and Ya.G. Sinai, Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys. 78 (1981) 479-497. [CrossRef] [MathSciNet]
  5. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105-152. [CrossRef] [MathSciNet]
  6. L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. [CrossRef] [MathSciNet]
  7. H.S. Dumas, L. Dumas and F. Golse, Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist. Phys. 87 (1997) 943-950. [CrossRef] [MathSciNet]
  8. G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).
  9. F. Golse, Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 381-410. [MathSciNet]
  10. H. Spohn, The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60 (1978) 277-290. [CrossRef] [MathSciNet]

Recommended for you