Free access
Issue
ESAIM: M2AN
Volume 35, Number 1, January/February 2001
Page(s) 1 - 15
DOI http://dx.doi.org/10.1051/m2an:2001104
Published online 15 April 2002
  1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces. SIAM Rev. 18 (1976) 620-709. [CrossRef] [MathSciNet]
  2. L. Badea, On the schwarz alternating method with more than two subdomains for nonlinear monotone problems. SIAM J. Numer. Anal. 28 (1991) 179-204. [CrossRef] [MathSciNet]
  3. X.C. Cai and M. Dryja, Domain decomposition methods for monotone nonlinear elliptic problems, in Domain decomposition methods in scientific and engineering computing, D. Keyes and J. Xu Eds., AMS, Providence, R.I. (1994) 335-360.
  4. T.F. Chan and T.P. Mathew, Domain decomposition algorithms. Acta Numer. (1994) 61-143.
  5. M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method. BIT (1997) 296-311.
  6. M. Dryja and O.B. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions. Technical report 339, Courant Institute, New York, USA (1987).
  7. R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux Eds., First Int. Symp. on Domain Decomposition Methods. SIAM, Philadelphia (1988).
  8. C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the lotka-volterra competition model. CPAM 47 (1994) 1571-1594.
  9. H.B. Keller and D.S. Cohen, Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 16 (1967) 1361-1376. [MathSciNet]
  10. P.L. Lions, On the Schwarz alternating method I, in First Int. Symp. on Domain Decomposition Methods, R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux Eds., SIAM, Philadelphia (1988) 1-42.
  11. P.L. Lions, On the Schwarz alternating method II, in Second Int. Conference on Domain Decomposition Methods, T.F. Chan, R. Glowinski, J. Periaux and O. Widlund Eds., SIAM, Philadelphia (1989) 47-70.
  12. S.H. Lui, On Schwarz alternating methods for the full potential equation. Preprint (1999).
  13. S.H. Lui, On Schwarz alternating methods for nonlinear elliptic pdes. SIAM J. Sci. Comput. 21 (2000) 1506-1523. [CrossRef]
  14. S.H. Lui, On Schwarz alternating methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. (to appear).
  15. C.V. Pao, Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992).
  16. C.V. Pao, Block monotone iterative methods for numerical solutions of nonlinear elliptic equations. Numer. Math. 72 (1995) 239-262. [CrossRef] [MathSciNet]
  17. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999).
  18. D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972) 979-1000. [CrossRef]
  19. B.F. Smith, P. Bjorstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Algorithms for Elliptic Partial Differential Equations. Cambridge University Press, New York (1996).
  20. X.C. Tai, Domain decomposition for linear and nonlinear elliptic problems via function or space decomposition, in Domain decomposition methods in scientific and engineering computing, D. Keyes and J. Xu Eds., AMS, Providence, R.I. (1994) 335-360.
  21. X.C. Tai and M. Espedal, Rate of convergence of some space decomposition methods for linear and nonlinear problems. SIAM J. Numer. Anal. 35 (1998) 1558-1570. [CrossRef] [MathSciNet]
  22. X.C. Tai and J. Xu, Global convergence of subspace correction methods for convex optimization problems. Report 114, Department of Mathematics, University of Bergen, Norway (1998).
  23. P. Le Tallec, Domain decomposition methods in computational mechanics. Computational Mechanics Advances 1 (1994) 121-220. [MathSciNet]
  24. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996) 1759-1777. [CrossRef] [MathSciNet]
  25. J. Xu and J. Zou, Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 857-914. [CrossRef] [MathSciNet]
  26. J. Zou and H.-C. Huang, Algebraic subproblem decomposition methods and parallel algorithms with monotone convergence. J. Comput. Math. 10 (1992) 47-59.

Recommended for you