Free access
Issue
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
Page(s) 191 - 228
DOI http://dx.doi.org/10.1051/m2an:2001112
Published online 15 April 2002
  1. R. Adams, Sobolev spaces. Academic Press, London (1976).
  2. R. Albanese and G. Rubinacci, Formulation of the eddy-current problem. IEEE proceedings 137 (1990).
  3. G. Anagnostou, A. Patera and Y. Maday, A sliding mesh for partial differential equations in nonstationary geometries: application to the incompressible Navier-Stockes equations. Tech. rep., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (1994).
  4. F. Ben Belgacem and Y. Maday, Non-conforming spectral element methodology tuned to parallel implementation. Comput. Meth. Appl. Mech. Engrg. 116 (1994) 59-67. [CrossRef]
  5. F. Ben Belgacem, Y. Maday, The mortar element method for three dimensional finite elements. RAIRO-Modél. Math. Anal. Numér. 2 (1997) 289-302.
  6. C. Bernardi, Optimal finite element interpolation of curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. [CrossRef] [MathSciNet]
  7. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: The mortar elements method, in Nonlinear partial differential equations and their applications, H. Brezis and J. Lions, Eds., Collège de France Seminar, Paris, Vol. XI (1994) 13-51.
  8. A. Bossavit, Électromagnétisme en vue de la modélisation, Springer-Verlag, Paris (1986).
  9. A. Bossavit, Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles. RAIRO-Modél. Math. Anal. Numér. 23 (1989) 235-259. [MathSciNet]
  10. A. Bossavit, Le calcul des courants de Foucault en dimension 3, avec le champ électrique comme inconnue. I: Principes. Rev. Phys. Appl. 25 (1990) 189-197.
  11. F. Bouillault, Z. Ren and A. Razek, Modélisation tridimensionnelle des courants de Foucault à l'aide de méthodes mixtes avec différentes formulations. Rev. Phys. Appl. 25 (1990) 583-592.
  12. C.J. Carpenter, Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. IEEE proceedings 124 (1977) 1026-1034.
  13. P. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
  14. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, 2nd edn. Masson, Paris (1987).
  15. B. Davat, Z. Ren and M. Lajoie-Mazenc, The movement in field modeling. IEEE, Trans. Magn. 21 (1985) 2296-2298.
  16. C.R.I. Emson, C.P. Riley, D.A. Walsh, K. Ueda and T. Kumano, Modeling eddy currents induced by rotating systems. IEEE, Trans. Magn. 34 (1998) 2593-2596.
  17. Y. Goldman, P. Joly and M. Kern, The electric field in the conductive half-space as a model in mining and petroleum prospection. Math. Meth. Appl. Sci. 11 (1989) 373-401. [CrossRef]
  18. J. Jackson, Classical electrodynamics. Wiley, New York (1952).
  19. S. Kurz, J. Fetzer, G. Lehenr, and W. Rucker, A novel formulation for 3d eddy current problems with moving bodies using a Lagrangian description and bem-fem coupling. IEEE, Trans. Magn. 34 (1998) 3068-3073.
  20. R. Leis, Initial Boundary value problems in mathematical physics. John Wiley and Sons (1986).
  21. Y. Marechal, G. Meunier, J. Coulomb and H. Magnin, A general purpose for restoring inter-element continuity. IEEE, Trans. Magn. 28 (1992) 1728-1731.
  22. A. Nicolet, F. Delincé, A. Genon and W. Legros, Finite elements-boundary elements coupling for the movement modeling in two dimensional structures. J. Phys. III 2 (1992) 2035-2044.
  23. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Ser. Comput. Math. 23, Springer-Verlag (1993).
  24. F. Rapetti, L. Santandrea, F. Bouillault and A. Razek, Simulating eddy currents distributions by a finite element method on moving non-matching grids. COMPEL 19 (2000) 10-29.
  25. A. Razek, J. Coulomb, M. Felliachi and J. Sobonnadière, Conception of an air-gap element for dynamic analysis of the electromagnetic fields in electric machines. IEEE, Trans. Magn. 18 (1982) 655-659.
  26. D. Rodger, H. Lai and P. Leonard, Coupled elements for problems involving movement. IEEE, Trans. Magn. 26 (1990) 548-550.
  27. V. Thomeé, Galerkin finite element methods for parabolic problems. Ser. Comput. Math. 25, Springer (1997).

Recommended for you