Free access
Issue
ESAIM: M2AN
Volume 35, Number 3, May-June 2001
Page(s) 575 - 593
DOI http://dx.doi.org/10.1051/m2an:2001127
Published online 15 April 2002
  1. J.M. Ball, A version of the fundamental theorem for young measures, in PDEs and continuum model of phase transition, Lect. Notes Phys. 344, Springer-Verlag, Berlin (1995) 241-259.
  2. C. Bardos, A.Y. LeRoux and J.C. Nedelec, First-order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4 (1979) 1017-1034. [CrossRef] [MathSciNet]
  3. S. Benharbit, A. Chalabi and J.P. Vila, Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions. SIAM J. Numer. Anal. 32 (1995) 775-796. [CrossRef] [MathSciNet]
  4. A. Bensoussan and J.L. Lions, Inéquations variationnelles non linéaires du premier et second ordre. C. R. Acad. Sci. Paris, Sér. A 276 (1973) 1411-1415.
  5. P. Bia and M. Combarnous, Les méthodes thermiques de production des hydrocarbures, Chap. 1 : Transfert de chaleur et de masse. Revue de l'Institut français du pétrole (1975) 359-394.
  6. C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence toward the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129-156. [CrossRef] [EDP Sciences]
  7. S. Champier, T. Gallouët and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on triangular mesh. Numer. Math. 66 (1993) 139-157. [CrossRef] [MathSciNet]
  8. R.J. Diperna, Measure-valued solutions to conservation laws. Arch. Rat. Mech. Anal. 88 (1985) 223-270. [CrossRef] [MathSciNet]
  9. R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chin. Ann. Math. 16B (1995) 1-14.
  10. G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Math. Appl. SMAI 22, Springer-Verlag, Berlin (1996).
  11. D. Kröner and M. Rokyta, Convergence of upwing finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994) 324-343. [CrossRef] [MathSciNet]
  12. S.N. Kruskov, First-order quasilinear equations in several independent variables. Math. USSR Sb. 10 (1970) 217-243. [CrossRef]
  13. L. Lévi and F. Peyroutet, A time-fractional step method for conservation law related obstacle problem. (Preprint 99/37. Laboratory of Applied Math., ERS 2055, Pau University.), Adv. Appl. Math. (to appear).
  14. F. Otto, Conservation laws in bounded domains, uniqueness and existence via parabolic approximation, in Weak and measure-valued solutions to evolutionary PDE's, J. Malek, J. Necas, M. Rokyta and M. Ruzicka Eds., Chapman & Hall, London (1996) 95-143.
  15. A. Szepessy, Measure solutions to scalar conservation laws with boundary conditions. Arch. Rat. Mech. Anal. 107 (1989) 181-193. [CrossRef]
  16. A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary condition. ESAIM: M2AN 25 (1991) 749-782.
  17. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics. Heriot-Watt Symposium, R.J. Knops Ed., Res. Notes Math. 4, Pitman Press, New-York (1979).
  18. G. Vallet, Dirichlet problem for nonlinear conservation law. Revista Matematica Complutense XIII (2000) 1-20.
  19. M.H. Vignal, Convergence of a finite volume scheme for elliptic-hyperbolic system. RAIRO: Modél. Math. Anal. Numér. 30 (1996) 841-872. [MathSciNet]

Recommended for you