 A. Bernudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 10491071. [CrossRef] [MathSciNet]
 R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp. (to appear).
 A. Chinnayya and A.Y. Le Roux, A new general Riemann solver for the shallowwater equations with friction and topography. Preprint (1999).
 V. Cornish, Ocean waves and kindred geophysical phenomena. Cambridge University Press, London (1934).
 C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften 325, SpringerVerlag, Berlin (2000) xvi+443 pp.
 R.F. Dressler, Mathematical solution of the problem of rollwaves in inclined open channels. Comm. Pure Appl. Math. 2 (1949) 149194. [CrossRef] [MathSciNet]
 T. Gallouët, J.M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallowwater equations with topography. AIAA2001 (to appear).
 J. Goodman, Stability of the KuramotoSivashinsky and related systems. Comm. Pure Appl. Math. 47 (1994) 293306. [CrossRef] [MathSciNet]
 L. Gosse, A wellbalanced fluxvector splitting scheme desinged for hyperbolic systems of conservation laws with source terms. Comp. Math. Appl. 39 (2000) 135159. [CrossRef] [MathSciNet]
 J.M. Greenberg and A.Y. Le Roux, A wellbalanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 116. [CrossRef] [MathSciNet]
 J.K. Hunter, Asymptotic equations for nonlinear hyperbolic waves, in Surveys in Appl. Math. Vol. 2, J.B. Keller, G. Papanicolaou, D.W. McLaughlin, Eds. (1993).
 H. Jeffreys, The flow of water in an inclined channel of rectangular section. Phil. Mag. 49 (1925) 793807.
 S. Jin, A steadystate capturing method for hyperbolic systems with source terms. ESAIM: M2AN (to appear).
 S. Jin and M. Katsoulakis, Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math. 61 (2000) 271292 (electronic).
 Y.J. Kim and A.E. Tzavaras, Diffusive Nwaves and metastability in Burgers equation. Preprint.
 C. Kranenburg, On the evolution of roll waves. J. Fluid Mech. 245 (1992) 249261. [CrossRef] [MathSciNet]
 P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMSNSF Regional Conference Series Appl. Math. 11, Philadelphia (1973).
 R. LeVeque, Numerical methods for conservation laws. Lect. Math., ETH Zurich, Birkhauser (1992).
 R.J. LeVeque, Balancing source terms and flux gradients in highresolution Godunov methods: the quasisteady wavepropagation algorithm. J. Comp. Phys. 146 (1998) 346365. [NASA ADS] [CrossRef] [MathSciNet]
 T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Memoirs of the AMS 56 (1985).
 A.N. Lyberopoulos, Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation. Quart. Appl. Math. XLVIII (1990) 755765.
 D.J. Needham and J.H. Merkin, On roll waves down an open inclined channel. Proc. Roy. Soc. Lond. A 394 (1984) 259278. [CrossRef]
 O.B. Novik, Model description of rollwaves. J. Appl. Math. Mech. 35 (1971) 938951. [CrossRef] [MathSciNet]
 P.L. Roe, Upwind differenced schemes for hyperbolic conservation laws with source terms. Lect. Notes Math. 1270, Springer, New York (1986) 4151.
 J.J. Stoker, Water Waves. John Wiley and Sons, New York (1958).
 J. Whitham, Linear and nonlinear waves. Wiley, New York (1974).
Free access
Issue 
ESAIM: M2AN
Volume 35, Number 3, MayJune 2001



Page(s)  463  480  
DOI  http://dx.doi.org/10.1051/m2an:2001123  
Published online  15 April 2002 