Free access
Issue
ESAIM: M2AN
Volume 35, Number 4, July-August 2001
Page(s) 779 - 798
DOI http://dx.doi.org/10.1051/m2an:2001136
Published online 15 April 2002
  1. J. Antihainen, R. Friesner and C. Leforestier, Adiabatic pseudospectral calculation of the vibrational states of the four atom molecules: Application to hydrogen peroxide. J. Chem. Phys. 102 (1995) 1270. [CrossRef]
  2. M. Azaiez, M. Dauge and Y. Maday, Méthodes spectrales et les éléments spectraux. Institut de Recherche Mathématique de Rennes, Prépublications 1994-17 (1994).
  3. I. Babuska and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 241-246.
  4. C. Bernardi and Y. Maday, Spectral methods, in Handbook of numerical analysis, Vol. V, Part 2, Ph. G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997).
  5. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer, Paris, Berlin, New York (1992).
  6. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, Part 2, Ph.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997).
  7. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics. Springer, Berlin (1987).
  8. R. Dutray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 5. Masson, CEA, Paris (1984).
  9. R. Friesner, J. Bentley, M. Menou and C. Leforestier, Adiabatic pseudospectral methods for multidimensional vibrational potentials. J. Chem. Phys. 99 (1993) 324. [CrossRef]
  10. R. Kosloff, Time-dependent quantum-mecanical methods for molecular dynamics. J. Chem. Phys. 92 (1988) 2087. [CrossRef]
  11. D. Kosloff and R. Kosloff, Fourier method for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys. 52 (1983) 35. [NASA ADS] [CrossRef]
  12. C. Leforestier, Grid representation of rotating triatomics. J. Chem. Phys. 94 (1991) 6388. [CrossRef]
  13. J.L. Lions and E. Magenes, Problèmes aux limites non-homogènes et applications. Dunod, Paris (1968).
  14. R. Verfürth, A posteriori error estimates for non-linear problems. Finite element discretisations of elliptic equations. Math. Comp. 62 (1994) 445-475
  15. R. Verfürth, A review of a posteriori error estimates and adaptative mesh-refinement techniques. Wiley-Teubner, Stuttgart (1997).
  16. K. Yamashita, K. Mokoruma and C. Leforestier, Theoretical study of the highly vibrationally excited states of FHF-: Ab initio potential energy surface and hyperspherical formulation. J. Chem. Phys. 99 (1993) 8848. [CrossRef]

Recommended for you