Free access
Issue
ESAIM: M2AN
Volume 35, Number 4, July-August 2001
Page(s) 631 - 645
DOI http://dx.doi.org/10.1051/m2an:2001130
Published online 15 April 2002
  1. A. Bernudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. & Fluids 23 (1994) 1049-1071. [CrossRef] [MathSciNet]
  2. R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp. (to appear).
  3. A. Chinnayya and A.Y. Le Roux, A new general Riemann solver for the shallow-water equations with friction and topography. Preprint (1999).
  4. T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. AIAA J. (to appear 2001).
  5. S.K. Godunov, Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics. Math. USSR-Sb. 47 (1959) 271-306.
  6. L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135-159. [CrossRef] [MathSciNet]
  7. L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. M 3AS (to appear).
  8. L. Gosse and A.-Y. Le Roux, A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996). 543-546
  9. J.M. Greenberg and A.-Y. Le Roux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 1-16 1996.
  10. J.M. Greenberg, A.-Y. Le Roux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980-2007. [CrossRef] [MathSciNet]
  11. S. Jin and M. Katsoulakis, Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math. 61 (2000) 271-292 (electronic).
  12. S. Jin and Y.J. Kim, On the computation of roll waves. ESAIM: M2AN 35 (2001) 463-480.
  13. C. Kranenburg, On the evolution of roll waves. J. Fluid Mech. 245 (1992) 249-261. [CrossRef] [MathSciNet]
  14. R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser, Basel (1992).
  15. R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346-365. [NASA ADS] [CrossRef] [MathSciNet]
  16. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. [NASA ADS] [CrossRef] [MathSciNet]
  17. P.L. Roe, Upwind differenced schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Étienne, 1986, Lect. Notes Math. Springer, Berlin, 1270 (1987) 41-45.
  18. M.E. Vazquez-Cendon, Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497-526. [CrossRef] [MathSciNet]

Recommended for you