Free access
Issue
ESAIM: M2AN
Volume 35, Number 4, July-August 2001
Page(s) 825 - 848
DOI http://dx.doi.org/10.1051/m2an:2001137
Published online 15 April 2002
  1. V.I. Agoshkov and V.I. Lebedev, Poincaré-Steklov operators and the methods of partition of the domain in variational problems, in Vychisl. Protsessy Sist. (Computational processes and systems), G.I. Marchuk, Ed., Nauka, Moscow 2 (1985) 173-227 (in Russian).
  2. A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of H(rot;Ω) and the construction of an extension operator. Manuscripta Math. 89 (1996) 159-178.
  3. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68 (1999) 607-631. [CrossRef] [MathSciNet]
  4. A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 143 (1997) 97-112. [CrossRef] [MathSciNet]
  5. A. Alonso, R.L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems. J. Comput. Appl. Math. 96 (1998) 51-76. [CrossRef] [MathSciNet]
  6. L.C. Berselli, Some topics in fluid mechanics. Ph.D. thesis, Dipartimento di Matematica, Università di Pisa, Italy (1999).
  7. L.C. Berselli and F. Saleri, New substructuring domain decomposition methods for advection-diffusion equations. J. Comput. Appl. Math. 116 (2000) 201-220. [CrossRef] [MathSciNet]
  8. P.E. Bjørstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. [CrossRef] [MathSciNet]
  9. A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993).
  10. J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in Domain Decomposition Methods, T.F. Chan et al., Eds., SIAM, Philadelphia (1989) 3-16.
  11. J.H. Bramble, J.E. Pasciak and A.H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures. Math. Comp. 46 (1986) 361-369. [CrossRef] [MathSciNet]
  12. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. [CrossRef] [MathSciNet]
  13. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31-48. [CrossRef] [MathSciNet]
  14. M. Cessenat, Mathematical methods in electromagnetism: Linear theory and applications. World Scientific Pub. Co., Singapore (1996).
  15. P. Collino, G. Delbue, P. Joly and A. Piacentini, A new interface condition in the non-overlapping domain decomposition method for the Maxwell equation. Comput. Methods Appl. Mech. Engrg. 148 (1997) 195-207. [CrossRef] [MathSciNet]
  16. B. Després, P. Joly and J.E. Roberts, A domain decomposition method for the harmonic Maxwell equation, in Iterative Methods in Linear Algebra, R. Beaurvens and P. de Groen, Eds., North Holland, Amsterdam (1992) 475-484.
  17. S. Kim, Domain decomposition iterative procedures for solving scalar waves in the frequency domain. Numer. Math. 79 (1998) 231-259. [CrossRef] [MathSciNet]
  18. R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics 11, H. Zorski, Ed., Pitman, London (1979) 187-203.
  19. L.D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575-598. [CrossRef] [MathSciNet]
  20. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. [CrossRef] [MathSciNet]
  21. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet]
  22. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet]
  23. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Oxford University Press, Oxford (1999).
  24. J.E. Santos, Global and domain-decomposed mixed methods for the solution of Maxwell's equations with application to magnetotellurics. Numer. Methods. Partial Differ. Equations 14 (1998) 407-437. [CrossRef]
  25. A. Toselli, Domain decomposition methods for vector field problems. Ph.D. thesis, Courant Institute, New York University, New York (1999).

Recommended for you