Free access
Issue
ESAIM: M2AN
Volume 35, Number 5, September-October 2001
Page(s) 981 - 1006
DOI http://dx.doi.org/10.1051/m2an:2001146
Published online 15 April 2002
  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. [CrossRef] [MathSciNet]
  2. J.W. Barrett and P. Knabner, Finite element approximation of transport of reactive solutes in porous media. Part i: error estimates for nonequilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 201-227. [CrossRef] [MathSciNet]
  3. J.W. Barrett and P. Knabner, Finite element approximation of transport of reactive solutes in porous media. Part ii: error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 455-479. [CrossRef] [MathSciNet]
  4. J.W Barrett and P. Knabner, An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics. SIAM J. Numer. Anal. 35 (1998) 1862-1882. [CrossRef] [MathSciNet]
  5. J. Bear, Dynamics of Fluids in Porous Media. Elsevier, New York (1972).
  6. R. Bermejo, Analysis of an algorithm for the Galerkin-characteristics method. Numer. Math. 60 (1991) 163-194. [CrossRef] [MathSciNet]
  7. R. Bermejo, A Galerkin-characteristics algorithm for transport-diffusion equation. SIAM J. Numer. Anal. 32 (1995) 425-455. [CrossRef] [MathSciNet]
  8. C.N. Dawson, Godunov-mixed methods for advection diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315-1332. [CrossRef] [MathSciNet]
  9. C.N. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations. SIAM J. Numer. Anal. 35 (1998) 1709-1724. [CrossRef] [MathSciNet]
  10. C.N. Dawson, C.J. van Duijn, and R.E. Grundy, Large time asymptotics in contaminant transport in porous media. SIAM J. Appl. Math. 56 (1996) 965-993. [CrossRef] [MathSciNet]
  11. C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics. SIAM J. Numer. Anal. 31 (1994) 982-999. [CrossRef] [MathSciNet]
  12. R Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871-885. [CrossRef] [MathSciNet]
  13. N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. John Wiley & Sons Ltd., New York (1959).
  14. R.E. Grundy, C.J. van Duijn, and C.N. Dawson, Asymptotic profiles with finite mass in one-dimensional contaminant transport through porous media. Quart. J. Mech. Appl. Math. 1 (1994) 69-106. [CrossRef]
  15. W. Jäger and J. Kacur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. [MathSciNet]
  16. J. Kacur, Solution of some free boundary problems by relaxation schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. [CrossRef] [MathSciNet]
  17. J. Kacur, Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19 (1999) 119-154. [CrossRef] [MathSciNet]
  18. J. Kacur and S. Luckhaus, Approximation of degenerate parabolic systems by nondegenerate elliptic and parabolic systems. Appl. Numer. Math. 25 (1997) 1-21. [CrossRef] [MathSciNet]
  19. J. Kacur, Solution of convection-diffusion problems with the memory terms, in Applied Mathematical Analysis, A. Sequiera, H. Beirao de Veiga, and J.H. Videman, Eds., Kluwer Academic, Plenum Publ., New York (1999) 199-212.
  20. P. Knabner, Mathematische Modelle für den Transport gelöstes Stoffe in sorbierenden Porösen Medien. Habilitationschrift, University of Augsburg, Germany (1989).
  21. P. Knabner and F. Otto, Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: uniqueness. To appear.
  22. A. Kufner, O. John, and S. Fucík, Function Spaces. Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977).
  23. K.W. Morton, A. Priestly, and E. Suli, Stability of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 4 (1988) 225-250.
  24. J. Necas, Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967).
  25. F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 105-110.
  26. P. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38 (1982) 309-332. [CrossRef]
  27. C.J. van Duijn and P. Knabner, Solute transport in porous media with equilibrium and nonequilibrium multiple site adsorption: Traveling waves. J. Reine Angew. Math. 415 (1991) 1-49. [MathSciNet]

Recommended for you