Free access
Issue
ESAIM: M2AN
Volume 35, Number 6, November/December 2001
Page(s) 1111 - 1136
DOI http://dx.doi.org/10.1051/m2an:2001150
Published online 15 April 2002
  1. S. Clain, Analyse mathématique et numérique d'un modèle de chauffage par induction. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (1994).
  2. S. Clain and R. Touzami, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. [MathSciNet]
  3. J. Cousteix, Turbulence et couche limite. Cepadues, Ed., Toulouse (1990).
  4. R. Dautrey and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Ed., Paris (1988).
  5. G. de Rham, Variétés différientiables. Hermann, Paris (1960).
  6. T. Gallouët and R. Herbin, Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 2 (1994) 49-55.
  7. T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities. To appear in J. Non-Linear Anal. TMA.
  8. M. Gómez Mármol and F. Ortegón Gallego, Existence of Solution to Non-Linear Elliptic Systems Arising in Turbulence Modelling. M 3AS (Math. Models Methods Appl. Sci.) 10 (2000) 247-260.
  9. M. Gómez Mármol and F. Ortegón Gallego, Coupling the Stokes and Navier-Stokes Equations with Two Scalar Nonlinear Parabolic Equations. ESAIM: M2AN 33 (1999) 157-167
  10. R. Lewandowski and B. Mohammadi, Existence and Positivity Results for the Φ - θ and a Modified k - ε Turbulence Models. M 3AS (Math. Models Methods Appl. Sci.) 3 (1993) 195-215.
  11. R. Lewandowski, Analyse mathématique et océanographie. Masson, Ed., Paris (1997).
  12. R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. J. Non-Linear Anal. TMA 28 (1997) 393-417. [CrossRef] [MathSciNet]
  13. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villard, Eds., Dunod, Paris (1969).
  14. B. Mohammadi and G. Puigt, Generalized Wall Functions for High-Speed Separated Flows over Adiabatic and Isothermal Walls. To appear in Internat. J. Comput. Fluid Dyn.
  15. B. Mohammadi, A Stable Algorithm for the k - ε Model for Compressible Flows. INRIA, Report No. 1335 (1990).
  16. B. Mohammadi and O. Pironneau, Analysis of the k - ε turbulence model. Wiley-Masson, Eds., Paris (1994).
  17. V.C. Patel, W. Rhodi and G. Scheuerer, Turbulence models for near-wall and low-Reynolds number flows: a review. AIAA J. 23 (1984) 1308-1319. [CrossRef] [MathSciNet]
  18. R. Temam, Infinite Dimensional Systems in Mechanics and Physics. 2nd edn., Springer-Verlag, Eds., Berlin, Heidelberg, New York (1997).

Recommended for you