Free access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 55 - 68
DOI http://dx.doi.org/10.1051/m2an:2002003
Published online 15 April 2002
  1. L.M. Abia, J.C. Lopez-Marcos and J. Martinez, Blow-up for semidiscretizations of reaction diffusion equations. Appl. Numer. Math. 20 (1996) 145-156. [CrossRef] [MathSciNet]
  2. L.M. Abia, J.C. Lopez-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction diffusion equations. Appl. Numer. Math.26 (1998) 399-414.
  3. G. Acosta, J. Fernández Bonder, P. Groisman and J.D. Rossi. Numerical approximation of a parabolic problem with nonlinear boundary condition in several space dimensions. Preprint.
  4. H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations. 72 (1988) 201-269. [CrossRef] [MathSciNet]
  5. C. Bandle and H. Brunner, Blow-up in diffusion equations: a survey. J. Comput. Appl. Math. 97 (1998) 3-22. [CrossRef] [MathSciNet]
  6. M. Berger and R.V. Kohn, A rescaling algorithm for the numerical calculation of blowing up solution. Comm. Pure Appl. Math. 41 (1988) 841-863. [CrossRef] [MathSciNet]
  7. C.J. Budd, W. Huang and R.D. Russell, Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17 (1996) 305-327. [CrossRef] [MathSciNet]
  8. Y.G. Chen, Asymptotic behaviours of blowing up solutions for finite difference analogue of Formula . J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986) 541-574. [MathSciNet]
  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
  10. R.G. Durán, J.I. Etcheverry and J.D. Rossi, Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete Contin. Dyn. Syst. 4 (1998) 497-506. [CrossRef]
  11. C.M. Elliot and A.M. Stuart, Global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (1993) 1622-1663. [CrossRef] [MathSciNet]
  12. J. Fernández Bonder and J.D. Rossi, Blow-up vs. spurious steady solutions. Proc. Amer. Math. Soc. 129 (2001) 139-144. [CrossRef] [MathSciNet]
  13. A.R. Humphries, D.A. Jones and A.M. Stuart, Approximation of dissipative partial differential equations over long time intervals, in D.F. Griffiths et al., Eds., Numerical Analysis 1993. Proc. 15th Dundee Biennal Conf. on Numerical Analysis, June 29-July 2nd, 1993, University of Dundee, UK, in Pitman Res. Notes Math. Ser. 303, Longman Scientific & Technical, Harlow (1994) 180-207.
  14. C.V. Pao, Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992).
  15. J.P. Pinasco and J.D. Rossi, Simultaneousvs. non-simultaneous blow-up. N. Z. J. Math. 29 (2000) 55-59.
  16. J.D. Rossi, On existence and nonexistence in the large for an N-dimensional system of heat equations with nontrivial coupling at the boundary. N. Z. J. Math. 26 (1997) 275-285.
  17. A. Samarski, V.A. Galaktionov, S.P. Kurdyunov and A.P. Mikailov, Blow-up in QuasiLinear Parabolic Equations, in Walter de Gruyter, Ed., de Gruyter Expositions in Mathematics 19, Berlin (1995).
  18. A.M. Stuart and A.R. Humphries, Dynamical systems and numerical analysis, in Cambridge Monographs on Applied and Computational Mathematics 2, Cambridge University Press, Cambridge (1998).

Recommended for you