Free access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 87 - 119
DOI http://dx.doi.org/10.1051/m2an:2002004
Published online 15 April 2002
  1. S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method. J. Comput. Phys. 134 (1997) 357-363.
  2. S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in CEM. Appl. Numer. Math. 27 (1998) 331-340. [CrossRef] [MathSciNet]
  3. J.P. Bérenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 114 (1994) 185-200. [NASA ADS] [CrossRef] [MathSciNet]
  4. F. Collino and P. Monk, Conditions et couches absorbantes pour les équations de Maxwell, in G. Cohen and P. Joly, Aspects récents en méthodes numériques pour les équations de Maxwell, Eds. École des Ondes, Chapter 4, INRIA, Rocquencourt (1998).
  5. J.W. Goodrich and T. Hagstrom, A comparison of two accurate boundary treatments for computational aeroacoustics. AIAA Paper-1585 (1997).
  6. J.S. Hesthaven, On the Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations. J. Comput. Phys. 142 (1998) 129-147. [CrossRef] [MathSciNet]
  7. F.Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys. 129 (1996) 201-219. [CrossRef] [MathSciNet]
  8. T. Kato, Perturbation Theory for Linear Operators. Springer (1995).
  9. H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, in Pure Appl. Math. 136, Academic Press, Boston, USA (1989).
  10. J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger. C.R. Acad. Sci. I Math. 10 (1999) 847-852.
  11. P.G. Petropoulos, L. Zhao and A.C. Cangellaris, A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high-order staggered finite difference schemes. J. Comput. Phys. 139 (1998) 184-208. [CrossRef] [MathSciNet]
  12. A.N. Rahmouni, Des modèles PML bien posés pour divers problèmes hyperboliques. Ph.D. thesis, Université Paris Nord-Paris XIII (2000).
  13. Allen Taflove, Computational electrodynamics: the finite-difference time-domain method. Artech House (1995).
  14. E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27 (1998) 533-557. [CrossRef] [MathSciNet]
  15. L. Zhao and A.C. Cangellaris, A General Approach for the Development of Unsplit-Field Time-Domain Implementations of Perfectly Matched Layers for FDTD Grid Truncation. IEEE Microwave and Guided Letters 6 May 1996.
  16. R.W. Ziolkowski, Time-derivative lorentz material model-based absorbing boundary condition. IEEE Trans. Antennas Propagation 45 (1997) 1530-1535. [CrossRef]

Recommended for you