Free access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 143 - 153
DOI http://dx.doi.org/10.1051/m2an:2002006
Published online 15 April 2002
  1. H.W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations. Math. Z. 183 (1983) 311-341. [CrossRef] [MathSciNet]
  2. H. Bauschke, The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996) 150-159. [CrossRef] [MathSciNet]
  3. Ph. Bénilan and K. Ha, Equation d'évolution du type Formula dans L(Ω). C.R. Acad. Sci. Paris Sér. A 281 (1975) 947-950.
  4. A. Berger, H. Brézis and J. Rogers, A numerical method for solving the problem Formula . RAIRO Anal. Numér. 13 (1979) 297-312. [MathSciNet]
  5. Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations 1 (1996) 1053-1073. [MathSciNet]
  6. Ph. Bénilan and P. Wittbold, Sur un problème parabolique-elliptique. ESAIM: M2AN 33 (1999) 121-127 . [CrossRef] [EDP Sciences]
  7. P. Colli, On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991).
  8. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990) 737-756. [CrossRef] [MathSciNet]
  9. B. Halpern, Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 957-961. [CrossRef] [MathSciNet]
  10. W. Jäger and J. Kacur, Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math. 60 (1991) 407-427. [MathSciNet]
  11. W. Jäger and J. Kacur, Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. [MathSciNet]
  12. J. Kacur, Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. [CrossRef] [MathSciNet]
  13. J. Kacur, A. Handlovicová and M. Kacurová, Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal. 30 (1993) 1703-1722. [CrossRef] [MathSciNet]
  14. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969).
  15. P.-L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A. 284 (1977) 1357-1359.
  16. E. Magenes, R.H. Nochetto and C. Verdi, Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655-678. [MathSciNet]
  17. E. Maitre, Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressible. Thèse, Université Grenoble I (1997).
  18. E. Maitre and P. Witomski, A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear).
  19. F. Otto, L1-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations 131 (1996) 20-38. [CrossRef] [MathSciNet]
  20. F. Simondon, Sur l'équation Formula par la méthode des semi-groupes dans L1. Séminaire d'analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984).

Recommended for you