Free access
Issue
ESAIM: M2AN
Volume 36, Number 2, March/April 2002
Page(s) 223 - 239
DOI http://dx.doi.org/10.1051/m2an:2002012
Published online 15 May 2002
  1. S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Math Studies (1965).
  2. J. Baranger, Analyse Numérique. Hermann, Paris (1991).
  3. D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-289. [CrossRef] [MathSciNet]
  4. D. Chenais, Sur une famille de variétés à bord lipschitziennes, application à un problème d'identification de domaine. Ann. Inst. Fourier (Grenoble) 4 (1977) 201-231.
  5. R. Dautray and J.L. Lions (Eds.), Analyse mathématique et calcul numérique, Vol. I and II. Masson, Paris (1984).
  6. J.E. Dennis and R.B. Schnabel, Numerical Methods for unconstrained optimization. Prentice Hall (1983).
  7. E. Durand, Magnétostatique. Masson, Paris (1968).
  8. A. Henrot and M. Pierre, Optimisation de forme (to appear).
  9. M. Pierre and J.R. Roche, Computation of free sufaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B Fluids 10 (1991) 489-500.
  10. M. Pierre and J.R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203-217. [CrossRef] [MathSciNet]
  11. O. Pironneau, Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New York (1984).
  12. J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649-687. [CrossRef] [MathSciNet]
  13. J. Simon, Variations with respect to domain for Neumann condition. Proceedings of the 1986 IFAC Congress at Pasadena ``Control of Distributed Parameter Systems".
  14. J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitity analysis. Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin (1992).

Recommended for you