Free access
Issue
ESAIM: M2AN
Volume 36, Number 2, March/April 2002
Page(s) 325 - 343
DOI http://dx.doi.org/10.1051/m2an:2002015
Published online 15 May 2002
  1. S. Alvarez, Problemas de frontera libre en teoría de lubricación. Ph.D. thesis, Universidad Complutense de Madrid (1986).
  2. I. Arregui and C. Vázquez, Finite element solution of a Reynolds-Koiter coupled problem for the elastic journal bearing. Comput. Methods Appl. Mech. Engrg. 190 (2001) 2051-2062. [CrossRef]
  3. G. Bayada and M. Chambat, The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Optim. 14 (1986) 73-93. [CrossRef] [MathSciNet]
  4. G. Bayada and M. Chambat, Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. Theoret. Appl. Mech. 5 (1986) 703-729.
  5. G. Bayada, M. Chambat and C. Vázquez, Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math. 98 (1998) 191-212. [CrossRef] [MathSciNet]
  6. G. Bayada, J. Durany and C. Vázquez, Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Methods Appl. Sci. 18 (1995) 255-266. [CrossRef] [MathSciNet]
  7. M. Bernadou and P.G. Ciarlet, Sur l'ellipiticité du modèle linéaire de coques de W.T. Koiter. Lecture Notes in Appl. Sci. Engrg. 34 (1976) 89-136.
  8. M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. J. Elasticity 34 (1992) 645-667.
  9. H. Brézis, Analyse fonctionnelle. Masson, Paris (1983).
  10. A. Cameron, Basic lubrication theory. Ellis Horwood, West Sussex (1981).
  11. Ph. Destuynder, Modélisation des coques minces élastiques. Masson, Paris (1990).
  12. Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part I: The mixed variational formulation. Comput. Methods Appl. Mech. Engrg. 120 (1995) 195-217. [CrossRef] [MathSciNet]
  13. Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part II: The numerical scheme. Comput. Methods Appl. Mech. Engrg. 120 (1995) 219-242. [CrossRef] [MathSciNet]
  14. J. Durany, G. García and C. Vázquez, An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model. RAIRO Modél. Math. Anal. Numér. 31 (1997) 495-516. [MathSciNet]
  15. J. Durany, G. García and C. Vázquez, Simulation of a lubricated Hertzian contact problem under imposed load. Finite Elem. Anal. Des. 38 (2002) 645-658. [CrossRef] [MathSciNet]
  16. V. Girault and P.A. Raviart, Finite element aproximation of the Navier-Stokes equations. Lecture Notes in Math. 749, Springer (1997).
  17. T.G. Hughes, C.D. Elcoate and H.P. Evans, A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isotermal, line contact problems. Internat. J. Numer. Methods Engrg. 44 (1999) 1099-1113. [CrossRef] [MathSciNet]
  18. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000).
  19. R. Verstappen, A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle. J. Comput. Phys. 97 (1991) 460-488. [CrossRef] [MathSciNet]
  20. S.R. Wu, A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Internat. J. Engrg. Sci. 24 (1986) 1001-1013. [CrossRef] [MathSciNet]
  21. S.R. Wu and J.T. Oden, A note on applications of adaptive finite elements to elastohydrodynamic lubrication problems. Comm. Appl. Numer. Methods 3 (1987) 485-494. [CrossRef]

Recommended for you