Free access
Volume 36, Number 2, March/April 2002
Page(s) 293 - 305
Published online 15 May 2002
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potential in three-dimensional nonsmooth domains. Math Methods Appl. Sci. 21 (1998) 823-864. [CrossRef] [MathSciNet]
  2. A. Bermúdez, R. Durán, A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. [CrossRef] [MathSciNet]
  3. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. [CrossRef] [MathSciNet]
  4. D. Boffi, A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14 (2001) 33-38. [CrossRef] [MathSciNet]
  5. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. [CrossRef] [MathSciNet]
  6. D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1998) 1264-1290. [CrossRef] [MathSciNet]
  7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
  8. F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems. Part i: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. [CrossRef] [MathSciNet]
  9. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. [CrossRef] [MathSciNet]
  10. L. Demkowicz, P. Monk, L. Vardapetyan and W. Rachowicz, de Rham diagram for hp finite element spaces. Comput. Math. Appl. 39 (2000) 29-38. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  11. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). [CrossRef] [MathSciNet]
  12. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97-112. [MathSciNet]
  13. P Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. [CrossRef] [MathSciNet]
  14. F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Vol. 64, pages 509-521, 1987.
  15. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989) 479-490.
  16. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. [CrossRef] [MathSciNet]
  17. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell's equations in Formula . Math. Comp. 70 (2001) 507-523. [CrossRef] [MathSciNet]
  18. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet]
  19. J.-C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet]
  20. J. Schöberl, Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, 2001.
  21. L. Vardapetyan and L. Demkowicz, hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. [CrossRef] [MathSciNet]

Recommended for you