Free access
Issue
ESAIM: M2AN
Volume 36, Number 3, May/June 2002
Page(s) 517 - 536
DOI http://dx.doi.org/10.1051/m2an:2002024
Published online 15 August 2002
  1. T. Amari, J.F. Luciani and P. Joly, A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput. 21 (1999) 970-986. [CrossRef] [MathSciNet]
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991).
  3. A. Bossavit, Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998).
  4. H. Brezis, Analyse fonctionnelle. Masson, Paris (1991).
  5. P. Clément, Approximation by finite element functions using local regularization. Anal. Numér. 9 (1975) 77-84.
  6. M. Costabel, A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991) 527-541. [CrossRef] [MathSciNet]
  7. M.L. Dudley and R.W. James, time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. London A425 (1989) 407-429.
  8. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). [CrossRef] [MathSciNet]
  9. J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83-111. [CrossRef] [MathSciNet]
  10. J.-L. Guermond, J. Léorat and C. Nore, Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001).
  11. J.-L. Guermond and P.D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002).
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986).
  13. J. Léorat, Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282-292. AIAA Progress in Astronautics and aeronautic series, 1994.
  14. J. Léorat, Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics 31 (1995) 367-373.
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
  16. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978).
  17. A.J. Meir and P.G. Schmidt, Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal. 36 (1999) 1304-1332. [CrossRef] [MathSciNet]
  18. J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
  19. J.-C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet]
  20. R.L. Parker, Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc. 291 (1966) 60-72. [CrossRef]
  21. N. Ben Salah, A. Soulaimani and W.G. Habashi, A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5867-5892. [CrossRef] [MathSciNet]
  22. N. Ben Salah, A. Soulaimani, W.G. Habashi and M. Fortin, A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids 29 (1999) 535-554. [CrossRef]
  23. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér. 18 (1984) 175-182. [MathSciNet]

Recommended for you