Free access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 725 - 746
DOI http://dx.doi.org/10.1051/m2an:2002032
Published online 15 September 2002
  1. F. Abergel and R. Temam, On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303-325. [CrossRef]
  2. E. Bänsch, An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes Equations. J. Comput. Math. 36 (1991) 3-28. [CrossRef]
  3. D. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1995).
  4. J.F. Bonnans et al., Optimisation Numérique. Math. Appl. 27, Springer-Verlag, Berlin (1997).
  5. O. Ghattas and J.J. Bark, Optimal control of two-and three-dimensional incompressible Navier-Stokes Flows. J. Comput. Physics 136 (1997) 231-244. [CrossRef]
  6. P.E. Gill et al., Practical Optimization. Academic Press, San Diego, California (1981).
  7. R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the Control of the Navier-Stokes Equations. Lect. Appl. Math. 28 (1991).
  8. W.A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control. Res. Notes Math. 47, Pitman, London (1980).
  9. M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers B.V. (1998) 178-203.
  10. M. Hintermüller, On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz Eds., Internat. Ser. Numer. Math. 138 (2001) 139-153.
  11. M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift (1999). Fachbereich Mathematik, Technische Universität Berlin, download see http://www.math.tu-dresden.de/~hinze/publications.html.
  12. M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Optim. Control 40 (2001) 925-946. [CrossRef] [MathSciNet]
  13. P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids 1 (1973) 73-100. [CrossRef] [MathSciNet]
  14. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM (1995).
  15. F.S. Kupfer, An infinite-dimensional convergence theory for reduced SQP-methods in Hilbert space. SIAM J. Optim. 6 (1996).
  16. E. Polak, Optimization. Appl. Math. Sci. 124, Springer-Verlag, New York (1997).
  17. M.J.D. Powell, Variable metric methods for constrained optimization, in Mathematical Programming, The State of the Art, Eds. Bachem, Grötschel, Korte, Bonn (1982).
  18. W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations. CBMS-NSF Regional Conference Series in Applied Mathematics 70, SIAM, Philadelphia (1998).
  19. K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Operationsforschung u. Statist, Ser. Optim. 14 (1983) 197-216.
  20. R. Temam, Navier-Stokes Equations. North-Holland (1979).

Recommended for you