Free access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 597 - 630
DOI http://dx.doi.org/10.1051/m2an:2002027
Published online 15 September 2002
  1. I. Babuska and L. Li, Hierarchic modelling of plates. Comput. & Structures 40 (1991) 419-430. [CrossRef]
  2. I. Babuska and L. Li, The problem of plate modelling - theoretical and computational results. Comput. Methods Appl. Mech. Engrg. 100 (1992) 249-273. [CrossRef]
  3. P. Bolley, J. Camus and M. Dauge, Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations 10 (1985) 391-432. [CrossRef] [MathSciNet]
  4. P.G. Ciarlet, Mathematical Elasticity II: Theory of Plates. Elsevier Publ., Amsterdam (1997).
  5. M. Dauge, I. Djurdjevic, E. Faou and A. Rössle, Eigenmodes asymptotic in thin elastic plates. J. Math. Pures Appl. 78 (1999) 925-964. [CrossRef] [MathSciNet]
  6. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167-197.
  7. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. II: Analysis of the boundary layer terms. Asymptot. Anal. 16 (1998) 99-124. [MathSciNet]
  8. M. Dauge and I. Gruais, Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg. 157 (1998) 335-347. [CrossRef] [MathSciNet]
  9. M. Dauge, I. Gruais and A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999/00) 305-345 (electronic).
  10. E. Faou, Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1 (2000).
  11. E. Faou, Élasticité linéarisée tridimensionnelle pour une coque mince : résolution en série formelle en puissances de l'épaisseur. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 415-420.
  12. R.D. Gregory and F.Y. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27-64. [CrossRef] [MathSciNet]
  13. B. Guo and I. Babuska, Regularity of the solutions for elliptic problems on nonsmooth domains in R3. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 77-126. [MathSciNet]
  14. B. Guo and I. Babuska, Regularity of the solutions for elliptic problems on nonsmooth domains in R3. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997).
  15. V.A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313.
  16. J.M. Melenk and C. Schwab, HP FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 1520-1557 (electronic). [CrossRef] [MathSciNet]
  17. C.B. Morrey and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10 (1957) 271-290. [CrossRef] [MathSciNet]
  18. C. Schwab, Boundary layer resolution in hierarchical models of laminated composites. RAIRO Modél. Math. Anal. Numér. 28 (1994) 517-537. [MathSciNet]
  19. C. Schwab,p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York (1998).
  20. C. Schwab and S. Wright, Boundary layer approximation in hierarchical beam and plate models. J. Elasticity 38 (1995) 1-40. [CrossRef] [MathSciNet]
  21. E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg. 150 (1997) 327-350. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997). [CrossRef] [MathSciNet]

Recommended for you