Free access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 1027 - 1042
DOI http://dx.doi.org/10.1051/m2an:2003004
Published online 15 January 2003
  1. T. Belytschko, Y.Y. Lu et L. Gu, Element-free Galerkin methods. Internat. J. Numer. Methods Engrg. 37 (1994) 229-256. [CrossRef] [MathSciNet]
  2. T. Belytschko et D. Organ, Element-free Galerkin methods for dynamic fracture in concrete. D.R.J. Owen, E. O nate and E. Hilton Eds., Comp. Plasticity. Fundamentals and Applications (1997) 304-321.
  3. T. Belytschko, D. Organ et Y. Krongauz, A coupled finite element-free Galerkin method. Comput. Mech. 17 (1995) 186-195. [MathSciNet]
  4. T. Belytschko et M. Tabbara, Dynamic fracture using element-free Galerkin methods. Internat. J. Numer. Methods Engrg. 39 (1996) 923-938. [CrossRef]
  5. P. Breitkopf, G. Touzot et P. Villon, Consistency approach and diffuse derivation in element-free methods based on moving least squares approximation. Comput. Assist. Mech. Eng. Sci. 5 (1998) 479-501.
  6. P. Breitkopf, A. Rassineux, G. Touzon et P. Villon, Explicit form and efficient computation of MLS shape functions and their derivatives. Internat. J. Numer. Methods Engrg. 48 (2000) 451-466. [CrossRef]
  7. P. Díez, M. Arroyo et A. Huerta, Adaptivity based on error estimation for viscoplastic softening materials. Mechanics of Cohesive-Frictional Materials 5 (2000) 87-112. [CrossRef]
  8. D. Hegen, Element-free Galerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 135 (1996) 143-166. [CrossRef]
  9. A. Huerta et P. Díez, Error estimation including pollution assessment for nonlinear finite element analysis. Comput. Methods Appl. Mech. Engrg. 180 (2000) 21-41.
  10. A. Huerta, A. Rodríguez-Ferran, P. Díez et J. Sarrate, Adaptive finite element strategies based on error analysis. Internat. J. Numer. Meth. Engrg. 46 (1999) 1803-1818. [CrossRef]
  11. A. Huerta et S. Fernández-Méndez, Enrichment and coupling of the finite element and meshless methods. Internat. J. Numer. Methods Engrg. 48 (2000) 1615-1636. [CrossRef]
  12. S. Kulasegaram et J. Bonet, Corrected smooth particle hydrodynamics method for metal forming simulations. J. Huétink and F.P.T. Baaijens Eds., Simulation of Materials Processing: Theory, Methods and Applications (1998) 137-142.
  13. W.K. Liu et Y. Chen, Wavelet and multiple scale reproducing kernel methods. Internat. J. Numer. Methods Fluids 21 (1995) 901-931. [CrossRef] [MathSciNet]
  14. W.K. Liu, S. Jun et Y.F. Zhang, Reproducing kernel particle methods. Internat. J. Numer. Methods Fluids 20 (1995) 1081-1106. [CrossRef] [MathSciNet]
  15. W.K. Liu, S. Li et T. Belytschko, Moving least square reproducing kernel methods. (I) Methodology and convergence. Comput. Methods Appl. Mech. Engrg. 143 (1996) 113-154.
  16. W.K. Liu, R.A. Uras et Y. Chen, Enrichment of the finite element method with reproducing kernel particle method. J. Appl. Mech. 64 (1997) 861-870. [CrossRef]
  17. Y.Y. Lu, T. Belytschko et L. Gu, A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg. 113 (1994) 397-414. [CrossRef] [MathSciNet]
  18. B. Nayroles, G. Touzot et P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10 (1992) 307-318. [CrossRef]
  19. D. Organ, M. Fleming, T. Terry et T. Belytschko, Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18 (1996) 225-235. [CrossRef]
  20. J.P. Vila, On particle weighted methods and smooth particle hydrodynamics. Math. Models Methods Appl. Sci. 9 (1999) 161-209. [CrossRef] [MathSciNet]
  21. P. Villon, Contribution à l'optimisation. Thèse d'état, Université Technologique de Compiègne (1991).

Recommended for you