Free access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 1013 - 1026
DOI http://dx.doi.org/10.1051/m2an:2003003
Published online 15 January 2003
  1. E.C. Bingham, Fluidity and plasticity. Mc Graw-Hill, New-York (1922).
  2. O. Cazacu and N. Cristescu, Constitutive model and analysis of creep flow of natural slopes. Ital. Geotech. J. 34 (2000) 44-54.
  3. N. Cristescu, Plastical flow through conical converging dies, using viscoplastic constitutive equations. Int. J. Mech. Sci. 17 (1975) 425-433. [CrossRef]
  4. N. Cristescu, On the optimal die angle in fast wire drawing. J. Mech. Work. Technol. 3 (1980) 275-287. [CrossRef]
  5. N. Cristescu, A model of stability of slopes in Slope Stability 2000. Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton and T.R. Martin (Eds.). Geotechnical special publication 101 (2000) 86-98.
  6. N. Cristescu, O. Cazacu and C. Cristescu, A model for slow motion of natural slopes. Can. Geotech. J. (to appear).
  7. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, Sobolev spaces and transport theory. Invent. Math. 98 (1989) 511-547. [CrossRef] [MathSciNet]
  8. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
  9. R. Glowinski, Lectures on numerical methods for nonlinear variational problems. Notes by M.G. Vijayasundaram and M. Adimurthi. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 65. Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York (1980).
  10. R. Glowinski, J.-L. Lions and R. Trémolières, Analyse numérique des inéquations variationnelles. Tome 1 : Théorie générale et premières applications. Tome 2 : Applications aux phénomènes stationnaires et d'évolution. Méthodes Mathématiques de l'Informatique, 5. Dunod, Paris (1976).
  11. I. Ionescu and M. Sofonea, The blocking property in the study of the Bingham fluid. Int. J. Engng. Sci. 24 (1986) 289-297. [CrossRef]
  12. I. Ionescu and M. Sofonea, Functional and numerical methods in viscoplasticity. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993).
  13. I. Ionescu and B. Vernescu, A numerical method for a viscoplastic problem. An application to the wire drawing. Internat. J. Engrg. Sci. 26 (1988) 627-633. [CrossRef]
  14. J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure. Appl. Math. XX (1967) 493-519.
  15. P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol 1: Incompressible models. Oxford University Press (1996).
  16. P.P. Mosolov and V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM, J. Mech. and Appl. Math. 29 (1965) 545-577.
  17. P.P. Mosolov and V.P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes. PPM, J. Mech. and Appl. Math. 30 (1966) 841-854.
  18. P.P. Mosolov and V.P. Miasnikov, On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM, J. Mech and Appl. Math. 31 (1967) 609-613.
  19. A. Nouri and F. Poupaud, An existence theorem for the multifluid Navier-Stokes problem. J. Differential Equations 122 (1995) 71-88. [CrossRef] [MathSciNet]
  20. J.G. Oldroyd, A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb. Philos. Soc. 43 (1947) 100-105. [CrossRef]
  21. P. Suquet, Un espace fonctionnel pour les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (6) 1 (1979) 77-87.
  22. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1979).
  23. R. Temam, Problèmes mathématiques en plasticité. Gauthiers-Villars, Paris (1983).
  24. R. Temam and G. Strang, Functions of bounded deformation. Arch. Rational Mech. Anal. 75 (1980) 7-21. [MathSciNet]

Recommended for you