Free access
Issue
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
Page(s) 133 - 142
DOI http://dx.doi.org/10.1051/m2an:2003016
Published online 15 March 2003
  1. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179-192.
  2. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989-1991) 13-51. Longman Sci. Tech., Harlow (1994).
  3. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (1986) 103-134. [CrossRef] [MathSciNet]
  4. J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1-22. [CrossRef] [MathSciNet]
  5. Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279-292. [CrossRef] [MathSciNet]
  6. M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51-64. [CrossRef] [MathSciNet]
  7. R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270-279.
  8. R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. [CrossRef] [MathSciNet]
  9. G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3-14. North-Holland, Amsterdam (1984).
  10. A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997).
  11. F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157-172. Springer, Berlin (1998).
  12. Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. [CrossRef] [MathSciNet]
  13. Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299-308. [MathSciNet]
  14. R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN 34 (2000) 31-45. [CrossRef] [EDP Sciences]
  15. J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear).
  16. G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107-129. [CrossRef] [MathSciNet]
  17. J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73-130.
  18. D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352-1367. [CrossRef] [MathSciNet]
  19. C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486-1495. [CrossRef] [MathSciNet]

Recommended for you