Free access
Issue
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
Page(s) 63 - 72
DOI http://dx.doi.org/10.1051/m2an:2003020
Published online 15 March 2003
  1. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. [CrossRef] [MathSciNet]
  2. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45-59. [CrossRef] [MathSciNet]
  3. S.C. Brenner and L. Sung, Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321-338. [CrossRef] [MathSciNet]
  4. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997).
  5. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér. Rouge 7 (1973) 33-75.
  6. R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57 (1991) 529-550. [CrossRef] [MathSciNet]
  7. M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505-520. [CrossRef] [MathSciNet]
  8. P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895-1908. [CrossRef] [MathSciNet]
  9. P. Hansbo and M.G. Larson, A simple nonconforming bilinear element for the elasticity problem. Trends in Computational Structural Mechanics, W.A. Wall et al. Eds., CIMNE (2001) 317-327.
  10. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987).
  11. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. [CrossRef] [MathSciNet]
  12. R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. [CrossRef] [MathSciNet]
  13. F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York (1981).
  14. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. [CrossRef] [MathSciNet]
  15. B. Cockburn, K.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes Comput. Sci. Eng., Springer Verlag (1999).

Recommended for you