Free access
Issue
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
Page(s) 187 - 207
DOI http://dx.doi.org/10.1051/m2an:2003013
Published online 15 March 2003
  1. AGARD, A selection of test cases for the evaluation of large-eddy simulations of turbulent flows. Advisory report no. 345 (1998).
  2. J.T. Beale, T. Kato and A. Majda, Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations. Springer-Verlag, Comm. Math. Phys. 94 (1984).
  3. H. Beir ao da Vega and L.C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows. Differential Integral Equations 15 (2002).
  4. V. Borue and S.A. Orszag, Local energy flux and subgrid-scale statistics in three dimensional turbulence. J. Fluid Mech. 366 (1998).
  5. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag (1988).
  6. A. Chorin, Vorticity and Turbulence. Springer Verlag, Appl. Math. Sci. 103 (1994).
  7. R.A. Clark, J.H. Ferziger and W.C. Reynolds, Evaluation of subgrid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1979).
  8. G. Comte-Bellot and S. Corrsin, Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence. J. Fluid Mech. 48 (1971).
  9. P. Constantin, Geometric Statistic in turbulence. SIAM Rev. 36 (1994).
  10. P. Constantin, Navier-Stokes Equations and Fluid Turbulence. Preprint arXiv:math.AP/0003235 (2000).
  11. P. Constantin and Ch. Fefferman, Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations. Indiana Univ. Math. J. 42 (1993).
  12. P. Constantin, Ch. Fefferman and A. Majda, Geometric Constraints on Potentially Singular Solutions for the 3-D Euler Equations. Comm. Partial Differential Equations 21 (1996).
  13. P. Constantin and C. Foias, Navier-Stokes Equations. Univ. of Chicago Press, Chicago, Chicago Lectures in Math. (1989).
  14. G.-H. Cottet, Anisotropic Subgrid-Scale Numerical Schemes for Large Eddy Simulation of Turbulent Flows. Unpublished report (1997).
  15. G.-H. Cottet, D. Jiroveanu and B. Michaux, Simulation des grandes échelles : aspects mathématiques et numériques. ESAIM Proc. 11 (2002) 85-95. [CrossRef]
  16. G.-H. Cottet and O.V. Vasilyev, Comparison of Dynamic Smagorinsky and Anisotropic Subgrid-Scale Models, in Proceedings of the Summer Program, Center for Turbulence Research (1998).
  17. G.-H. Cottet and A.A. Wray, Anisotropic grid-based formulas for subgrid-scale models, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1997).
  18. E. David, Modélisation des écoulements compressibles et hypersoniques : une approche instationnaire. Ph.D. thesis, INPG-LEGI Grenoble (1993).
  19. T. Dubois and F. Bouchon, Subgrid-scale models based on incremental unknowns for large eddy simulations, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1998).
  20. F. Ducros, Simulation numérique directe et des grandes échelles de couches limites compressibles. Ph.D. thesis, INPG-LEGI Grenoble (1995).
  21. C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dynam. Differential Equations 14 (2002).
  22. G.P. Galdi and W.J. Layton, Approximating the larger eddies in fluid motion II: a model for space filtered flow. Math. Models Methods Appl. Sci. 10 (2000).
  23. M. Germano, U. Piomelli, P. Moin and W.H. Cabot, A Dynamic Subgrid-Scale Eddy Viscosity Model. Phys. Fluids A 3 (1991).
  24. T. Iliescu and P. Fischer, Large Eddy Simulation of Turbulent Channel Flows by the Rational LES Model. Preprint ANL/MCS-P932-0302 (2002).
  25. D. Jiroveanu, Analyse mathématique et numérique de certains modèles de viscosité turbulente. Ph.D. thesis, University Joseph Fourier Grenoble I (2002).
  26. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30 (1941).
  27. O.A. Ladyszenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breasch, New York (1969).
  28. O.A. Ladyszenskaya, On the Dynamical System Generated by the Navier-Stokes Equations. English translation in J. Sov. Math. 3 (1975).
  29. O.A. Ladyszenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V, Amer. Math. Soc., Providence, RI (1970).
  30. A. Leonard, Energy cascade in large-eddy simulations of turbulent flows. Adv. Geophysics 18 (1974).
  31. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934).
  32. M. Lesieur, Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht (1997).
  33. M. Lesieur and O. Metais, New trends in large eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28 (1996) 45-82. [CrossRef]
  34. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Paris (1969).
  35. S. Liu, C. Meneveau and J. Katz, On the properties of similarity subgrid-scales models as deduced from measurements in a turbulent jet. J. Fluids Mech. 275 (1994) 83-119. [CrossRef]
  36. J. Malek and J. Necas, A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids. J. Differential Equations 127 (1996).
  37. J. Marsden and S. Skholler, Global Well-posedness for the Lagrangian Averaged Navier-Stokes (LANS) Equations on Bounded Domains. Meeting of Royal Society London (2000).
  38. J. Marsden, T. Ratiu and S. Skholler, The Geometry and Analysis of the Averaged Euler Equations and a New Diffeomorphism Group. Geom. Funct. Anal. 10 (2000).
  39. O. Metais and M. Lesieur, Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239 (1992) 157-194. [CrossRef] [MathSciNet]
  40. K. Mosheini, S. Skholler, B. Kosovic, J. Marsden, D. Caratti, A. Wray and R. Rogallo, Numerical Simulations of Homogeneous Turbulence Using the Lagrangian Averaged Navier-Stokes Equations in Proc. CTR summer school (2000).
  41. C. Parès, Uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43 (1992).
  42. U. Piomelli, Y. Yu and R.J. Adrian, Subgrid scale energy transfer and near-wall turbulence structure. Phys. Fluids 8 (1996) 215-224. [CrossRef]
  43. R.S. Rogallo and P. Moin, Numerical Simulation of Turbulent Flows. Annu. Rev. Fluid Mech. 16 (1984) 99-137. [CrossRef]
  44. J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (1963).
  45. C.G. Speziale, Turbulence modeling for time-dependent RANS and VLES: A review. AIAA Journal 36 (1998).
  46. S. Stoltz and N.A. Adams, An Approximative Deconvolution Procedure for Large-Eddy Simulation. Phys. Fluids 11 (1999).
  47. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Appl. Math. Sci. 68 (1988).
  48. B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer. Ph.D. thesis, University of Twente (1995).
  49. D.C. Wilcox, Turbulence Modeling CFD. DCW Industries Inc. (1993).
  50. E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1990).

Recommended for you