Free access
Volume 37, Number 2, March/April 2003
Page(s) 291 - 318
Published online 15 November 2003
  1. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999) 607-631.
  2. H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60 (2000) 1805-1823. [CrossRef] [MathSciNet]
  3. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. [CrossRef] [MathSciNet]
  4. A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxell equations. SIAM J. Numer. Anal. 40 (2002) 1823-1849. [CrossRef] [MathSciNet]
  5. A. Bossavit and J. Vérité, The TRIFOU code: Solving the 3-D eddy-currents problem by using H as state variable. IEEE Trans. Mag. 19 (1983) 2465-2470. [CrossRef]
  6. A. Bossavit, Two dual formulations of the 3-D eddy-currents problem. COMPEL 4 (1985) 103-116. [CrossRef] [MathSciNet]
  7. A. Bossavit, A rationale for edge elements in 3-D field computations. IEEE Trans. Mag. 24 (1988) 74-79. [CrossRef]
  8. A. Bossavit, The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association. Math. Comput. Modelling 15 (1991) 33-42. [CrossRef]
  9. A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, Berlin, Heidelberg (1993).
  10. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, Berlin, Heidelberg, New York (1991).
  11. A. Buffa, Hodge decompositions on the boundary of a polyhedron: the multi-connected case. Math. Models Methods Appl. Sci. 11 (2001) 1491-1504. [CrossRef] [MathSciNet]
  12. A. Buffa, Traces for functional spaces related to Maxwell equations: an overview, in Proceedings of GAMM-Workshop, Kiel (2001).
  13. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equation. Part I: An integration by parts formula in lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. [CrossRef] [MathSciNet]
  14. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. University of Pavia, IAN-CNR 1185 (2000).
  15. A. Buffa, M. Costabel and Ch. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains. Numer. Math. (2001) (electronic) DOI 10.1007/s002110100372.
  16. M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in The Mathematics of Finite Elements and Applications IV, Academic Press, London (1988).
  17. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5. Masson, Paris, Milan, Barcelone (1988).
  18. G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Longman (1995).
  19. V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations: theory and algorithms. Springer, Berlin, Heidelberg, New York (1986).
  20. R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40 (2002) 41-65. [CrossRef] [MathSciNet]
  21. C. Johnson and J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063-1079. [CrossRef] [MathSciNet]
  22. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press (2000).
  23. S. Meddahi, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35 (1998) 1393-1415. [CrossRef] [MathSciNet]
  24. S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 675-696. [CrossRef] [MathSciNet]
  25. S. Meddahi and F.J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082-2102. [CrossRef] [MathSciNet]
  26. S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 127-141.
  27. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet]
  28. J.C. Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems. Springer-Verlag, New York (2001).
  29. J.E. Roberts and J.M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 523-639.

Recommended for you